Autolysis (alcohol fermentation)

Last updated
Many of the flavors associated with premium Champagne are influenced by the autolysis of the lees during winemaking. Cocktail by candle light 1.jpg
Many of the flavors associated with premium Champagne are influenced by the autolysis of the lees during winemaking.

Autolysis in winemaking relates to the complex chemical reactions that take place when a wine spends time in contact with the lees, or dead yeast cells, after fermentation. While for some wines - and all beers [1] - autolysis is undesirable, it is a vital component in shaping the flavors and mouth feel associated with premium Champagne production. [2] [3] The practice of leaving a wine to age on its lees (or sur lie aging) has a long history in winemaking dating back to Roman winemaking. The chemical process and details of autolysis were not originally understood scientifically, but the positive effects such as a creamy mouthfeel, breadlike and floral aromas, and reduced astringency were noticed early in the history of wine. [4]

Contents

History

Ancient Roman writers, such as Marcus Porcius Cato, observed that wine that was left on its lees (or sediment as they knew it) exhibited different characteristics than wine that was quickly separated from its sediment. While the Romans did not understand the full chemical process or details behind the autolysis that took place, they were able to perceive the results of this autolysis in the creamy mouthfeel, reduced astringency and unique flavors and aromas that developed. [4] With modern day understanding of autolysis, winemaking in the Champagne have strict regulation regarding the time Champagne must spend in contact with its lees in order to receive some benefit from autolysis. Under Appellation d'origine contrôlée (AOC) regulations, wines from Champagne cannot legally be sold until it has gone through autolysis in the bottle for at least 15 months with non-vintage Champagne. Vintage Champagne must have a minimum of 3 years aging; some Champagne houses extend the time for autolysis to 7 years or more. [5]

Process

As the Champagne ages on its lees (pictured inside bottle) the process of autolysis causes the release of mannoproteins and polysaccharides that influence the flavor of the wine. Undegorgierter Champagner.jpg
As the Champagne ages on its lees (pictured inside bottle) the process of autolysis causes the release of mannoproteins and polysaccharides that influence the flavor of the wine.

During fermentation, yeast cells convert the sugar in the grape must into ethanol. When the sugar food source for the yeast and necessary nutrients such as nitrogen run out, or the alcohol level of the wine reaches such a point to where it is toxic for the yeast, the cells die and sink to the bottom of the fermentation vessel. These dead cells, or "lees", are normally removed by racking the wine into a clean vessel. If the wine is left in contact with the lees, enzymes start to break the cells down producing mannoproteins (mannose-containing glycoproteins) and polysaccharides that are released into the wine. In sparkling wine production, a wine is made "sparkling" or "bubbly" because a secondary fermentation is introduced when the wine is contained within a sealed wine bottle. During this time the wine is deliberately kept in contact with its lees inside the bottle for a period ranging from a couple of months to several years. Studies have shown that the chemical reaction of autolysis, and its impact on the wine, starts to become noticeable after 18 months and will continue to impart traits for at least 5 years. The sparkling wine is eventually separated from its lees through a technique known as riddling and disgorgement. [2]

Influences on the wine

The effects of autolysis on wine contributes to a creamy mouthfeel that may make a wine seem to have a fuller body. The release of enzymes inhibits oxidation which improves some of the aging potential of the wine. The mannoproteins improve the overall stability of the proteins in the wine by reducing the amount of tartrates that are precipitated out. They may also bind with the tannins in the wine to reduce the perception of bitterness or astringency in the wine. The increased production of amino acids leads to the develop of several flavors associated with premium Champagne including aromas of biscuits [6] or bread dough, nuttiness [7] and acacia. As the wine ages further, more complex notes may develop from the effects of autolysis. [2]

Potential faults

If not properly managed, wine faults can potentially develop from autolysis. If the layer of lees begins to exceed 4 inches (10 centimeters), the enzymes released from the process of the yeast digesting themselves creates reducing conditions and promotes the development of hydrogen sulfide and mercaptan odors. The process of stirring the lees or bâttonage can help prevent a thick layer of lees forming and promote a smoother autolysis. Poor hygiene of the winemaking equipment or wine made from grapes that had residue from fungicide can create off odors smelling of sulfide. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Sparkling wine</span> Wine with significant levels of carbon dioxide

Sparkling wine is a wine with significant levels of carbon dioxide in it, making it fizzy. While the phrase commonly refers to champagne, European Union countries legally reserve that term for products exclusively produced in the Champagne region of France. Sparkling wine is usually either white or rosé, but there are examples of red sparkling wines such as the Italian Brachetto, Bonarda and Lambrusco, and the Australian sparkling Shiraz. The sweetness of sparkling wine can range from very dry brut styles to sweeter doux varieties.

<span class="mw-page-title-main">Winemaking</span> Production of wine

Winemaking or vinification is the production of wine, starting with the selection of the fruit, its fermentation into alcohol, and the bottling of the finished liquid. The history of wine-making stretches over millennia. The science of wine and winemaking is known as oenology. A winemaker may also be called a vintner. The growing of grapes is viticulture and there are many varieties of grapes.

<span class="mw-page-title-main">Red wine</span> Wine made from dark-colored grape varieties

Red wine is a type of wine made from dark-colored grape varieties. The color of the wine can range from intense violet, typical of young wines, through to brick red for mature wines and brown for older red wines. The juice from most purple grapes is greenish-white, the red color coming from anthocyan pigments present in the skin of the grape. Much of the red wine production process involves extraction of color and flavor components from the grape skin.

<span class="mw-page-title-main">White wine</span> Wine fermented without skin contact

White wine is a wine that is fermented without skin contact. The colour can be straw-yellow, yellow-green, or yellow-gold. It is produced by the alcoholic fermentation of the non-coloured pulp of grapes, which may have a skin of any colour. White wine has existed for at least 4,000 years.

<span class="mw-page-title-main">Malolactic fermentation</span> Process in winemaking

Malolactic conversion is a process in winemaking in which tart-tasting malic acid, naturally present in grape must, is converted to softer-tasting lactic acid. Malolactic fermentation is most often performed as a secondary fermentation shortly after the end of the primary fermentation, but can sometimes run concurrently with it. The process is standard for most red wine production and common for some white grape varieties such as Chardonnay, where it can impart a "buttery" flavor from diacetyl, a byproduct of the reaction.

<span class="mw-page-title-main">Muscadet</span>

Muscadet is a French white wine. It is made at the western end of the Loire Valley, near the city of Nantes in the Pays de la Loire region. It is made from the Melon de Bourgogne grape, often referred to simply as melon. While most appellation d'origine contrôlée wines are named after their growing region, or in Alsace after their variety, the name Muscadet refers to an alleged characteristic of the wine produced by the melon grape variety: vin qui a un goût musqué. However, according to wine expert Tom Stevenson, Muscadet wines do not have much, if any, muskiness or Muscat-like flavors or aromas.

In biology, autolysis, more commonly known as self-digestion, refers to the destruction of a cell through the action of its own enzymes. It may also refer to the digestion of an enzyme by another molecule of the same enzyme.

Secondary fermentation is a process commonly associated with winemaking, which entails a second period of fermentation in a different vessel than the one used to start the fermentation process. An example of this would be starting fermentation in a carboy or stainless steel tank and then moving it over to oak barrels. Rather than being a separate, second fermentation, this is most often one single fermentation period that is conducted in multiple vessels. However, the term does also apply to procedures that could be described as a second and distinct fermentation period.

The glossary of wine terms lists the definitions of many general terms used within the wine industry. For terms specific to viticulture, winemaking, grape varieties, and wine tasting, see the topic specific list in the "See also" section below.

<span class="mw-page-title-main">Outline of wine</span> Overview of and topical guide to wine

The following outline is provided as an overview of and topical guide to wine

<span class="mw-page-title-main">Lees (fermentation)</span> Deposits of residual yeast and other particles in wine-making

Lees are deposits of dead yeast or residual yeast and other particles that precipitate, or are carried by the action of "fining", to the bottom of a vat of wine after fermentation and aging. The same while brewing beer at a brewery is known as trub – the same from secondary fermentation of wine and beer are the lees or equally, as to beer only, dregs. This material is the source for most commercial tartaric acid, which is used in cooking and in organic chemistry.

<span class="mw-page-title-main">Sparkling wine production</span> Method in wine production

Sparkling wine production is the method of winemaking used to produce sparkling wine. The oldest known production of sparkling wine took place in 1531 with the ancestral method.

<span class="mw-page-title-main">Fermentation in winemaking</span> Wine making process

The process of fermentation in winemaking turns grape juice into an alcoholic beverage. During fermentation, yeasts transform sugars present in the juice into ethanol and carbon dioxide. In winemaking, the temperature and speed of fermentation are important considerations as well as the levels of oxygen present in the must at the start of the fermentation. The risk of stuck fermentation and the development of several wine faults can also occur during this stage, which can last anywhere from 5 to 14 days for primary fermentation and potentially another 5 to 10 days for a secondary fermentation. Fermentation may be done in stainless steel tanks, which is common with many white wines like Riesling, in an open wooden vat, inside a wine barrel and inside the wine bottle itself as in the production of many sparkling wines.

Ann C. Noble is a sensory chemist and retired professor from the University of California, Davis. During her time at the UC Davis Department of Viticulture and Enology, Noble invented the "Aroma Wheel" which is credited with enhancing the public understanding of wine tasting and terminology. At the time of her hiring at UC Davis in 1974, Noble was the first woman hired as a faculty member of the Viticulture department. Noble retired from Davis in 2002 and in 2003 was named Emeritus Professor of Enology. Since retirement she has participated as a judge in the San Francisco Chronicle Wine Competition.

<span class="mw-page-title-main">Sugars in wine</span>

Sugars in wine are at the heart of what makes winemaking possible. During the process of fermentation, sugars from wine grapes are broken down and converted by yeast into alcohol (ethanol) and carbon dioxide. Grapes accumulate sugars as they grow on the grapevine through the translocation of sucrose molecules that are produced by photosynthesis from the leaves. During ripening the sucrose molecules are hydrolyzed (separated) by the enzyme invertase into glucose and fructose. By the time of harvest, between 15 and 25% of the grape will be composed of simple sugars. Both glucose and fructose are six-carbon sugars but three-, four-, five- and seven-carbon sugars are also present in the grape. Not all sugars are fermentable, with sugars like the five-carbon arabinose, rhamnose and xylose still being present in the wine after fermentation. Very high sugar content will effectively kill the yeast once a certain (high) alcohol content is reached. For these reasons, no wine is ever fermented completely "dry". Sugar's role in dictating the final alcohol content of the wine sometimes encourages winemakers to add sugar during winemaking in a process known as chaptalization solely in order to boost the alcohol content – chaptalization does not increase the sweetness of a wine.

<span class="mw-page-title-main">Acids in wine</span>

The acids in wine are an important component in both winemaking and the finished product of wine. They are present in both grapes and wine, having direct influences on the color, balance and taste of the wine as well as the growth and vitality of yeast during fermentation and protecting the wine from bacteria. The measure of the amount of acidity in wine is known as the “titratable acidity” or “total acidity”, which refers to the test that yields the total of all acids present, while strength of acidity is measured according to pH, with most wines having a pH between 2.9 and 3.9. Generally, the lower the pH, the higher the acidity in the wine. There is no direct connection between total acidity and pH. In wine tasting, the term “acidity” refers to the fresh, tart and sour attributes of the wine which are evaluated in relation to how well the acidity balances out the sweetness and bitter components of the wine such as tannins. Three primary acids are found in wine grapes: tartaric, malic, and citric acids. During the course of winemaking and in the finished wines, acetic, butyric, lactic, and succinic acids can play significant roles. Most of the acids involved with wine are fixed acids with the notable exception of acetic acid, mostly found in vinegar, which is volatile and can contribute to the wine fault known as volatile acidity. Sometimes, additional acids, such as ascorbic, sorbic and sulfurous acids, are used in winemaking.

<span class="mw-page-title-main">Aging of wine</span> Overview of the aging of wine

The aging of wine is potentially able to improve the quality of wine. This distinguishes wine from most other consumable goods. While wine is perishable and capable of deteriorating, complex chemical reactions involving a wine's sugars, acids and phenolic compounds can alter the aroma, color, mouthfeel and taste of the wine in a way that may be more pleasing to the taster. The ability of a wine to age is influenced by many factors including grape variety, vintage, viticultural practices, wine region and winemaking style. The condition that the wine is kept in after bottling can also influence how well a wine ages and may require significant time and financial investment. The quality of an aged wine varies significantly bottle-by-bottle, depending on the conditions under which it was stored, and the condition of the bottle and cork, and thus it is said that rather than good old vintages, there are good old bottles. There is a significant mystique around the aging of wine, as its chemistry was not understood for a long time, and old wines are often sold for extraordinary prices. However, the vast majority of wine is not aged, and even wine that is aged is rarely aged for long; it is estimated that 90% of wine is meant to be consumed within a year of production, and 99% of wine within 5 years.

This glossary of winemaking terms lists some of terms and definitions involved in making wine, fruit wine, and mead.

<span class="mw-page-title-main">Clarification and stabilization of wine</span> Wine clarification and stabilisation

In winemaking, clarification and stabilization are the processes by which insoluble matter suspended in the wine is removed before bottling. This matter may include dead yeast cells (lees), bacteria, tartrates, proteins, pectins, various tannins and other phenolic compounds, as well as pieces of grape skin, pulp, stems and gums. Clarification and stabilization may involve fining, filtration, centrifugation, flotation, refrigeration, pasteurization, and/or barrel maturation and racking.

<span class="mw-page-title-main">Yeast in winemaking</span> Yeasts used for alcoholic fermentation of wine

The role of yeast in winemaking is the most important element that distinguishes wine from fruit juice. In the absence of oxygen, yeast converts the sugars of the fruit into alcohol and carbon dioxide through the process of fermentation. The more sugars in the grapes, the higher the potential alcohol level of the wine if the yeast are allowed to carry out fermentation to dryness. Sometimes winemakers will stop fermentation early in order to leave some residual sugars and sweetness in the wine such as with dessert wines. This can be achieved by dropping fermentation temperatures to the point where the yeast are inactive, sterile filtering the wine to remove the yeast or fortification with brandy or neutral spirits to kill off the yeast cells. If fermentation is unintentionally stopped, such as when the yeasts become exhausted of available nutrients and the wine has not yet reached dryness, this is considered a stuck fermentation.

References

  1. Palmer, John. "Autolysis". How to brew. Retrieved 28 March 2020.
  2. 1 2 3 J. Robinson (ed) "The Oxford Companion to Wine" Third Edition pg 54 Oxford University Press 2006 ISBN   0-19-860990-6
  3. Champagne Science "Autolysis - and its effects on Champagne Archived February 16, 2011, at the Wayback Machine " Accessed: December 30th, 2008
  4. 1 2 3 Jancis Robinson (ed), The Oxford Companion to Wine Third Edition pg 399 Oxford University Press 2006 ISBN   0-19-860990-6
  5. K. MacNeil The Wine Bible pg 653 Workman Publishing 2001 ISBN   1-56305-434-5
  6. Caterer and Hotel Keeper Magazine "The changing face of Moet" July 26th, 2001
  7. Beverage Industry Factsheet "Autolysis Archived March 27, 2008, at the Wayback Machine " Accessed Dec. 20th, 2008