Automated fiber placement

Last updated

Automated fiber placement (AFP), also known as advanced fiber placement, is an advanced method of manufacturing composite materials. These materials, which offer lighter weight with equivalent or greater strength than metals, [1] are increasingly used in airframes and other industrial products.

Contents

Fiber Placement is an automated composites manufacturing process of heating and compacting synthetic resin pre-impregnated non-metallic fibers on typically complex tooling mandrels. The fiber usually comes in the form of what are referred to as "tows". A tow is typically a bundle of carbon fibers impregnated with epoxy resin and is approximately 0.500 inches (12.7 mm) wide by 0.005 inches (0.13 mm) thick and comes on a spool. Fiber placement machines (FPM) generally have a capacity of 12 to 32 tows or when placing all tows at a time in a course, have respective course widths of 1.5 in to 4 in. The tows are fed to a heater and compaction roller on the FPM head and through robotic type machine movements, are placed in courses across a tool surface. Courses are generally placed in orientations of 0°, +45°, -45° and 90° to build up plies which in combination, have good properties in all directions. Fiber placement machines are generally rated in (lb/h), (lb/min) or weight per time.

Description

Automated fiber placement (AFP) machines are a recent development of composite manufacturing technologies meant to increase rate and precision in the production of advanced composite parts. [2] AFP machines place fiber reinforcements on moulds or mandrels in an automatic fashion and use a number of separate small width tows (typically 8 millimetres (0.31 in) or less) of thermoset or thermoplastic pre-impregnated materials to form composite layups. This technology allows better precision and increased deposition rates when compared with experienced laminators but, while allowing for more complex layup geometries than Automated Tape Laying (ATL) it does not reach the same deposition rates. Automated fiber placement can be used to manufacture complex structures that are not possible to manufacture with any other methods. [3]

See also

Related Research Articles

Composite material Material made from a combination of two or more unlike substances

A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions.

Fiberglass, or fibreglass, is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.

Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

Pre-preg is a composite material made from "pre-impregnated" fibers and a partially cured polymer matrix, such as epoxy or phenolic resin, or even thermoplastic mixed with liquid rubbers or resins. The fibers often take the form of a weave and the matrix is used to bond them together and to other components during manufacture. The thermoset matrix is only partially cured to allow easy handling; this B-Stage material requires cold storage to prevent complete curing. B-Stage pre-preg is always stored in cooled areas since heat accelerates complete polymerization. Hence, composite structures built of pre-pregs will mostly require an oven or autoclave to cure. The main idea behind a pre-preg material is the use of anisotropic mechanical properties along the fibers, while the polymer matrix provides filling properties, keeping the fibers in a single system.

Mandrel

A mandrel, mandril, or arbor is a gently tapered cylinder against which material can be forged or shaped, or a flanged or tapered or threaded bar that grips a workpiece to be machined in a lathe. A flanged mandrel is a parallel bar of a specific diameter with an integral flange towards one end, and threaded at the opposite end. Work is gripped between the flange and a nut on the thread. A tapered mandrel has a taper of approximately 0.005 inches per foot and is designed to hold work by being driven into an accurate hole on the work, gripping the work by friction. A threaded mandrel may have a male or female thread, and work which has an identical thread is screwed onto the mandrel.

Filament winding is a fabrication technique mainly used for manufacturing open (cylinders) or closed end structures. This process involves winding filaments under tension over a rotating mandrel. The mandrel rotates around the spindle while a delivery eye on a carriage traverses horizontally in line with the axis of the rotating mandrel, laying down fibers in the desired pattern or angle to the rotational axis. The most common filaments are glass or carbon and are impregnated with resin by passing through a bath as they are wound onto the mandrel. Once the mandrel is completely covered to the desired thickness, the resin is cured. Depending on the resin system and its cure characteristics, often the mandrel is autoclaved or heated in an oven or rotated under radiant heaters until the part is cured. Once the resin has cured, the mandrel is removed or extracted, leaving the hollow final product. For some products such as gas bottles, the 'mandrel' is a permanent part of the finished product forming a liner to prevent gas leakage or as a barrier to protect the composite from the fluid to be stored.

Pultrusion is a continuous process for manufacture of fibre-reinforced plastics with constant cross-section. The term is a portmanteau word, combining "pull" and "extrusion". As opposed to extrusion, which pushes the material, pultrusion pulls the material.

Diamond tool

A diamond tool is a cutting tool with diamond grains fixed on the functional parts of the tool via a bonding material or another method. As diamond is a superhard material, diamond tools have many advantages as compared with tools made with common abrasives such as corundum and silicon carbide.

Digital modeling and fabrication is a design and production process that combines 3D modeling or computing-aided design (CAD) with additive and subtractive manufacturing. Additive manufacturing is also known as 3D printing, while subtractive manufacturing may also be referred to as machining, and many other technologies can be exploited to physically produce the designed objects.

Carbon Fiber-reinforced polymers, carbon-fibre-reinforced polymers, or carbon-fiber-reinforced plastics, or carbon-fiber reinforced-thermoplastic, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.

Z-pinning

Z-pinning is a technique to insert reinforcing fibres along the Z-direction of continuous fibre-reinforced plastics. Z-pins can be made of metal or precured unidirectional composite fibres. It is designed for use within pre-preg technology; there is extensive experimental evidence that Z-pinning dramatically improves the resistance of the composite structure to delamination. The figure on the right shows a Z-pin inserted in between the fibres of the material. The pin spreads the fibres and creates an oval shaped gap that is filled with resin. The Z-pin prevents the composite from delamination. When a load is applied the cracks will typically form along the line of the opening.

Advanced composite materials (ACMs) are generally characterized or determined by unusually high strength fibres with unusually high stiffness, or modulus of elasticity characteristics, compared to other materials, while bound together by weaker matrices. These are termed advanced composite materials (ACM) in comparison to the composite materials commonly in use such as reinforced concrete, or even concrete itself. The high strength fibers are also low density while occupying a large fraction of the volume

Out of autoclave composite manufacturing is an alternative to the traditional high pressure autoclave (industrial) curing process commonly used by the aerospace manufacturers for manufacturing composite material. Out of autoclave (OOA) is a process that achieves the same quality as an autoclave but through a different process. OOA curing achieves the desired fiber content and elimination of voids by placing the layup within a closed mold and applying vacuum, pressure, and heat by means other than an autoclave. An RTM press is the typical method of applying heat and pressure to the closed mold. There are several out of autoclave technologies in current use including resin transfer molding (RTM), Same Qualified Resin Transfer Molding (SQRTM), vacuum-assisted resin transfer molding (VARTM), and balanced pressure fluid molding. The most advanced of these processes can produce high-tech net shape aircraft components.

Offshore Spars

Offshore Spars is a US manufacturer of custom-designed carbon fiber and aluminum spars for sailing yachts.

Tailored fiber placement

Tailored fiber placement (TFP) is a textile manufacturing technique based on the principle of sewing for a continuous placement of fibrous material for composite components. The fibrous material is fixed with an upper and lower stitching thread on a base material. Compared to other textile manufacturing processes fiber material can be placed near net-shape in curvilinear patterns upon a base material in order to create stress adapted composite parts.

Ingersoll Machine Tools

Ingersoll Machine Tools is a manufacturer located in Rockford, Illinois that produces large scale machine tools for use in metal cutting, 3D Printing, and automated fiber placement.

Vacuum Assisted Resin Transfer Molding (VARTM) or Vacuum Injected Molding (VIM) is a closed mold, out of autoclave (OOA) composite manufacturing process. VARTM is a variation of Resin Transfer Molding (RTM) with its distinguishing characteristic being the replacement of the top portion of a mold tool with a vacuum bag and the use of a vacuum to assist in resin flow. The process involves the use of a vacuum to facilitate resin flow into a fiber layup contained within a mold tool covered by a vacuum bag. After the impregnation occurs the composite part is allowed to cure at room temperature with an optional post cure sometimes carried out.

A void is a pore that remains unfilled with polymer and fibers in a composite material. Voids are typically the result of poor manufacturing of the material and are generally deemed undesirable. Voids can affect the mechanical properties and lifespan of the composite. They degrade mainly the matrix-dominated properties such as interlaminar shear strength, longitudinal compressive strength, and transverse tensile strength. Voids can act as crack initiation sites as well as allow moisture to penetrate the composite and contribute to the anisotropy of the composite. For aerospace applications, a void content of approximately 1% is still acceptable, while for less sensitive applications, the allowance limit is 3-5%. Although a small increase in void content may not seem to cause significant issues, a 1-3% increase in void content of carbon fiber reinforced composite can reduce the mechanical properties by up to 20% Void content in composites is represented as a ratio, also called void ratio, where the volume of voids, solid material, and bulk volume are taken into account. Void ratio can be calculated by the formula below where e is the void ratio of the composite, Vv is the volume of the voids, and Vt is the volume of the bulk material.

A Lay-Up process is a moulding process for composite materials, in which the final product is obtained by overlapping a specific number of different layers, usually made of continuous polymeric or ceramic fibres and a thermoset polymeric liquid matrix. It can be divided into Dry Lay-up and Wet Lay-Up, depending on whether the layers are pre-impregnated or not. Dry Lay-up is a common process in the aerospace industry, due to the possibility of obtaining complex shapes with good mechanical properties, characteristics required in this field. On the contrary, as Wet Lay-Up does not allow uni-directional fabrics, which have better mechanical properties, it is mainly adopted for all other areas, which in general have lower requirements in terms of performance.

The main stages of the Lay-Up process are cutting, lamination and polymerization. Even though some of the production steps can be automated, this process is mainly manual, leading to laminates with high production costs and low production rates with respect to other techniques. Hence, nowadays, it is mainly suitable for small series production runs of 10 to 1000 parts.

Fiber Patch Placement (FPP), initially known as Fiber-Patch-Preforming.., is a robot-operated manufacturing technology for fiber composite objects such carbon, glass and adhesives.

References

  1. "What is Automated Fibre Placement". Composites Evolution. January 19, 2021.
  2. Lukaszewicz, Dirk; et al. (2012). "The engineering aspects of automated prepreg layup: History, present and future". Composites Part B: Engineering. 43 (3).
  3. Ridgard, C. (2009). "Out of autoclave composite technology for aerospace, defense and space structures". International SAMPE Symposium and Exhibition. 54.