Autorotation (fixed-wing aircraft)

Last updated
Spin -- an aggravated stall and autorotation Spin--an aggravated stall and autorotation..JPG
Spin — an aggravated stall and autorotation

For fixed-wing aircraft, autorotation is the tendency of an aircraft in or near a stall to roll spontaneously to the right or left, leading to a spin (a state of continuous autorotation). [1] [2]

Contents

Autorotation in fixed-wing aircraft

A typical graph of lift coefficient and drag coefficient versus angle of attack. At any angle of attack greater than the stalling angle an increase in angle of attack causes a reduction in lift coefficient, and a decrease in angle of attack causes an increase in lift coefficient. Aerodynamic spin diagram.png
A typical graph of lift coefficient and drag coefficient versus angle of attack. At any angle of attack greater than the stalling angle an increase in angle of attack causes a reduction in lift coefficient, and a decrease in angle of attack causes an increase in lift coefficient.

When the angle of attack is less than the stalling angle, any increase in angle of attack causes an increase in lift coefficient that causes the wing to rise. As the wing rises the angle of attack and lift coefficient decrease which tend to restore the wing to its original angle of attack. Conversely any decrease in angle of attack causes a decrease in lift coefficient which causes the wing to descend. As the wing descends, the angle of attack and lift coefficient increase which tends to restore the wing to its original angle of attack. For this reason the angle of attack is stable when it is less than the stalling angle. [1] [3] The aircraft displays damping in roll. [4]

When the wing is stalled and the angle of attack is greater than the stalling angle, any increase in angle of attack causes a decrease in lift coefficient that causes the wing to descend. As the wing descends the angle of attack increases, which causes the lift coefficient to decrease and the angle of attack to increase. Conversely any decrease in angle of attack causes an increase in lift coefficient that causes the wing to rise. As the wing rises the angle of attack decreases and causes the lift coefficient to increase further towards the maximum lift coefficient. For this reason the angle of attack is unstable when it is greater than the stalling angle. Any disturbance of the angle of attack on one wing will cause the whole wing to roll spontaneously and continuously. [1] [3]

When the angle of attack on the wing of an aircraft reaches the stalling angle the aircraft is at risk of autorotation. This will eventually develop into a spin if the pilot does not take corrective action.

Autorotation in kites and gliders

  1. Magnus effect rotating kites (wing flipping or wing tumbling) that have the rotation axis bluntly normal to the stream direction use autorotation; a net lift is possible that lifts the kite and payload to altitude. The Rotoplane, the UFO rotating kite, and the Skybow rotating ribbon arch kite use the Magnus effect resulting from the autorotating wing with rotation axis normal to the stream. [5]
  2. Some kites are equipped with autorotation wings. [5]
  3. Again, a third kind of autorotation occurs in self-rotating bols, rotating parachutes, or rotating helical objects sometimes used as kite tails or kite-line laundry. This kind of autorotation drives wind and water propeller-type turbines, sometimes used to generate electricity. [6] [7]
  4. Unlocked engine-off aircraft propellers may autorotate. Such autorotation is being explored for generating electricity to recharge flight-driving batteries. [8]

Autorotation in airborne wind energy (AWE) technology

Autorotation is the basis of a large sector of airborne wind energy (AWE) technology. High altitude wind power research and development centers frequently are dependent on blade autorotation: SkyMill Energy, Joby Energy, Sky Windpower, BaseLoad Energy, Magenn Power, and Makani Power are making and testing airborne wind energy conversion systems (AWECS) that employ autorotation of blades to drive the shafts of generators to make electricity at altitude and send the electricity to earth via conductive tethers. [9]

See also

Related Research Articles

Aircraft Vehicle or machine that is able to fly by gaining support from the air

An aircraft is a vehicle or machine that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines. Common examples of aircraft include airplanes, helicopters, airships, gliders, paramotors, and hot air balloons.

Wing Surface used for flight, for example by insects, birds, bats and airplanes

A wing is a type of fin that produces lift while moving through air or some other fluid. Accordingly, wings have streamlined cross-sections that are subject to aerodynamic forces and act as airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.

Stall (fluid dynamics) Abrupt reduction in lift due to flow separation

In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack increases. This occurs when the critical angle of attack of the foil is exceeded. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil, and Reynolds number.

Angle of attack Angle between the chord of a wing and the undisturbed airflow

In fluid dynamics, angle of attack is the angle between a reference line on a body and the vector representing the relative motion between the body and the fluid through which it is moving. Angle of attack is the angle between the body's reference line and the oncoming flow. This article focuses on the most common application, the angle of attack of a wing or airfoil moving through air.

Wing loading

In aerodynamics, wing loading is the total mass of an aircraft or flying animal divided by the area of its wing. The stalling speed of an aircraft in straight, level flight is partly determined by its wing loading. An aircraft or animal with a low wing loading has a larger wing area relative to its mass, as compared to one with a high wing loading.

Spin (aerodynamics) Aviation term for a corkscrew downward path

In flight dynamics a spin is a special category of stall resulting in autorotation about the aircraft's longitudinal axis and a shallow, rotating, downward path approximately centred on a vertical axis. Spins can be entered intentionally or unintentionally, from any flight attitude if the aircraft has sufficient yaw while at the stall point. In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different.

Flight control surfaces Surface that allows a pilot to adjust and control an aircrafts flight attitude

Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude.

Flap (aeronautics) Anti-stalling high-lift device on aircraft

A flap is a high-lift device used to reduce the stalling speed of an aircraft wing at a given weight. Flaps are usually mounted on the wing trailing edges of a fixed-wing aircraft. Flaps are used to reduce the take-off distance and the landing distance. Flaps also cause an increase in drag so they are retracted when not needed.

Retreating blade stall is a hazardous flight condition in helicopters and other rotary wing aircraft, where the retreating rotor blade has a lower relative blade speed, combined with an increased angle of attack, causing a stall and loss of lift. Retreating blade stall is the primary limiting factor of a helicopter's never exceed speed, VNE.

Helicopter flight controls Instruments used in helicopter flight

A helicopter pilot manipulates the helicopter flight controls to achieve and maintain controlled aerodynamic flight. Changes to the aircraft flight control system transmit mechanically to the rotor, producing aerodynamic effects on the rotor blades that make the helicopter move in a deliberate way. To tilt forward and back (pitch) or sideways (roll) requires that the controls alter the angle of attack of the main rotor blades cyclically during rotation, creating differing amounts of lift (force) at different points in the cycle. To increase or decrease overall lift requires that the controls alter the angle of attack for all blades collectively by equal amounts at the same time, resulting in ascent, descent, acceleration and deceleration.

Stabilizer (aeronautics) Aircraft component

An aircraft stabilizer is an aerodynamic surface, typically including one or more movable control surfaces, that provides longitudinal (pitch) and/or directional (yaw) stability and control. A stabilizer can feature a fixed or adjustable structure on which any movable control surfaces are hinged, or it can itself be a fully movable surface such as a stabilator. Depending on the context, "stabilizer" may sometimes describe only the front part of the overall surface.

Airborne wind turbine High-altitude flying turbine for generating electricity

An airborne wind turbine is a design concept for a wind turbine with a rotor supported in the air without a tower, thus benefiting from the higher velocity and persistence of wind at high altitudes, while avoiding the expense of tower construction, or the need for slip rings or yaw mechanism. An electrical generator may be on the ground or airborne. Challenges include safely suspending and maintaining turbines hundreds of meters off the ground in high winds and storms, transferring the harvested and/or generated power back to earth, and interference with aviation.

Airborne wind energy (AWE) is the direct use or generation of wind energy by the use of aerodynamic or aerostatic lift devices. AWE technology is able to harvest high altitude winds, in contrast to wind turbines, which use a rotor mounted on a tower.

Canard (aeronautics) Aircraft configuration in which a small wing is placed in front of the main wing

In aeronautics, a canard is a wing configuration in which a small forewing or foreplane is placed forward of the main wing of a fixed-wing aircraft or a weapon. The term "canard" may be used to describe the aircraft itself, the wing configuration, or the foreplane. Canard wings are also extensively used in guided missiles and smart bombs.

Autorotation Rotation of helicopter rotors by action of wind resistance rather that engine power

Autorotation is a state of flight in which the main rotor system of a helicopter or other rotary-wing aircraft turns by the action of air moving up through the rotor, as with an autogyro, rather than engine power driving the rotor. The term autorotation dates to a period of early helicopter development between 1915 and 1920, and refers to the rotors turning without the engine. It is analogous to the gliding flight of a fixed-wing aircraft. Autorotation has also evolved to be used by certain trees as a means of disseminating their seeds further.

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by gliding animals and by aircraft such as gliders. This mode of flight involves flying a significant distance horizontally compared to its descent and therefore can be distinguished from a mostly straight downward descent like with a round parachute.

A laddermill kite system is an airborne wind turbine consisting of a long string or loop of power kites. The loop or string of kites would be launched in the air by the lifting force of the kites, until it is fully unrolled, and the top reaches a height determined by designers and operators; some designers have considered heights of about 30,000 feet, but the concept is not height-dependent. The laddermill method may use one endless loop, two endless loops, or more such loops. A laddermill kite system had been built and flown by Dave Santos of kPower, Inc.

Leading-edge slat Device increasing the lift of the wing at low speed (take-off and landing)

Slats are aerodynamic surfaces on the leading edge of the wings of fixed-wing aircraft which, when deployed, allow the wing to operate at a higher angle of attack. A higher coefficient of lift is produced as a result of angle of attack and speed, so by deploying slats an aircraft can fly at slower speeds, or take off and land in shorter distances. They are usually used while landing or performing maneuvers which take the aircraft close to a stall, but are usually retracted in normal flight to minimize drag. They decrease stall speed.

Crosswind kite power

Crosswind kite power is power derived from a class of airborne wind-energy conversion systems or crosswind kite power systems (CWKPS) characterized by a kite system that has energy-harvesting parts that fly transverse to the direction of the ambient wind, i.e., to crosswind mode; sometimes the entire wing set and tether set is flown in crosswind mode. These systems at many scales from toy to power-grid-feeding sizes may be used as high-altitude wind power (HAWP) devices or low-altitude wind power (LAWP) devices without having to use towers. Flexible wings or rigid wings may be used in the kite system. A tethered wing, flying in crosswind at many times wind speed, harvests wind power from an area that is many times exceeding the wing's own area. Crosswind kite power systems have some advantages over conventional wind turbines: access to more powerful and stable wind resource, high capacity factor, capability for deployment on and offshore at comparable costs, and no need for a tower. Additionally, the wings of the CWKPS may vary in aerodynamic efficiency; the movement of crosswinding tethered wings is sometimes compared with the outer parts of conventional wind turbine blades. However, a conventional traverse-to-wind rotating blade set carried aloft in a kite-power system has the blade set cutting to crosswind and is a form of crosswind kite power. Miles L. Loyd furthered studies on crosswind kite power systems in his work "Crosswind Kite Power" in 1980. Some believe that crosswind kite power was introduced by P. Payne and C. McCutchen in their patent No. 3,987,987, filed in 1975, however, crosswind kite power was used far before such patent, e.g., in target kites for war-target practice where the crosswinding power permitted high speeds to give practice to gunners.

Falling leaf

A falling leaf is a maneuver in which an aircraft performs a wings-level stall which begins to induce a spin. This spin is countered with the rudder, which begins a spin in the opposite direction that must be countered with rudder, and the process is repeated as many times as the pilot determines. During the maneuver, the plane resembles a leaf falling from the sky; first slipping to one side, stopping, and then slipping to the other direction; continuing a side-to-side motion as it drifts toward the ground.

References

Notes

  1. 1 2 3 Clancy, L.J., Aerodynamics, Sections 16.48 and 16.49
  2. Stinton, Darryl, Flying Qualities and Flight Testing of The Aeroplane, Chapter 5 (p.503)
  3. 1 2 Stinton, Darryl, Flying Qualities and Flight Testing of The Aeroplane, Chapter 12 (p.517)
  4. "Autorotation and spin entry". Archived from the original on 2 March 2009. Retrieved 2009-02-24.
  5. 1 2 Rotating Kites
  6. KiteLab
  7. Magenn Power, Inc. Archived 2008-12-11 at the Wayback Machine
  8. Regenerative Battery-Augmented Soaring Paul B. MacCready Sailplane Homebuilders Association
  9. Energykitesystems