Axiality (geometry)

Last updated

In the geometry of the Euclidean plane, axiality is a measure of how much axial symmetry a shape has. It is defined as the ratio of areas of the largest axially symmetric subset of the shape to the whole shape. Equivalently it is the largest fraction of the area of the shape that can be covered by a mirror reflection of the shape (with any orientation).

Contents

A shape that is itself axially symmetric, such as an isosceles triangle, will have an axiality of exactly one, whereas an asymmetric shape, such as a scalene triangle, will have axiality less than one.

Upper and lower bounds

Lassak (2002) showed that every convex set has axiality at least 2/3. [1] This result improved a previous lower bound of 5/8 by Krakowski (1963). [2] The best upper bound known is given by a particular convex quadrilateral, found through a computer search, whose axiality is less than 0.816. [3]

For triangles and for centrally symmetric convex bodies, the axiality is always somewhat higher: every triangle, and every centrally symmetric convex body, has axiality at least . In the set of obtuse triangles whose vertices have -coordinates , , and , the axiality approaches in the limit as the -coordinates approach zero, showing that the lower bound is as large as possible. It is also possible to construct a sequence of centrally symmetric parallelograms whose axiality has the same limit, again showing that the lower bound is tight. [4] [5]

Algorithms

The axiality of a given convex shape can be approximated arbitrarily closely in sublinear time, given access to the shape by oracles for finding an extreme point in a given direction and for finding the intersection of the shape with a line. [6]

Barequet & Rogol (2007) consider the problem of computing the axiality exactly, for both convex and non-convex polygons. The set of all possible reflection symmetry lines in the plane is (by projective duality) a two-dimensional space, which they partition into cells within which the pattern of crossings of the polygon with its reflection is fixed, causing the axiality to vary smoothly within each cell. They thus reduce the problem to a numerical computation within each cell, which they do not solve explicitly. The partition of the plane into cells has cells in the general case, and cells for convex polygons; it can be constructed in an amount of time which is larger than these bounds by a logarithmic factor. Barequet and Rogol claim that in practice the area maximization problem within a single cell can be solved in time, giving (non-rigorous) overall time bounds of for the convex case and for the general case. [7]

de Valcourt (1966) lists 11 different measures of axial symmetry, of which the one described here is number three. [8] He requires each such measure to be invariant under similarity transformations of the given shape, to take the value one for symmetric shapes, and to take a value between zero and one for other shapes. Other symmetry measures with these properties include the ratio of the area of the shape to its smallest enclosing symmetric superset, and the analogous ratios of perimeters.

Lassak (2002), as well as studying axiality, studies a restricted version of axiality in which the goal is to find a halfspace whose intersection with a convex shape has large area lies entirely within the reflection of the shape across the halfspace boundary. He shows that such an intersection can always be found to have area at least 1/8 that of the whole shape. [1]

In the study of computer vision, Marola (1989) proposed to measure the symmetry of a digital image (viewed as a function from points in the plane to grayscale intensity values in the interval ) by finding a reflection that maximizes the area integral [9]

When is the indicator function of a given shape, this is the same as the axiality.

Related Research Articles

<span class="mw-page-title-main">Bipyramid</span> Polyhedron formed by joining mirroring pyramids base-to-base

A (symmetric) n-gonal bipyramid or dipyramid is a polyhedron formed by joining an n-gonal pyramid and its mirror image base-to-base. An n-gonal bipyramid has 2n triangle faces, 3n edges, and 2 + n vertices.

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.

A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent regular polygons, and the same number of faces meet at each vertex. There are only five such polyhedra:

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Parallelogram</span> Quadrilateral with two pairs of parallel sides

In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.

<span class="mw-page-title-main">Decagon</span> Shape with ten sides

In geometry, a decagon is a ten-sided polygon or 10-gon. The total sum of the interior angles of a simple decagon is 1440°.

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular and equilateral. Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.

<span class="mw-page-title-main">Cupola (geometry)</span> Solid made by joining an n- and 2n-gon with triangles and squares

In geometry, a cupola is a solid formed by joining two polygons, one with twice as many edges as the other, by an alternating band of isosceles triangles and rectangles. If the triangles are equilateral and the rectangles are squares, while the base and its opposite face are regular polygons, the triangular, square, and pentagonal cupolae all count among the Johnson solids, and can be formed by taking sections of the cuboctahedron, rhombicuboctahedron, and rhombicosidodecahedron, respectively.

<span class="mw-page-title-main">Rotational symmetry</span> Property of objects which appear unchanged after a partial rotation

Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.

<span class="mw-page-title-main">Square pyramid</span> Pyramid with a square base

In geometry, a square pyramid is a pyramid with a square base, having a total of five faces. If the apex of the pyramid is directly above the center of the square, it is a right square pyramid with four isosceles triangles; otherwise, it is an oblique square pyramid. When all of the pyramid's edges are equal in length, its triangles are all equilateral, and it is called an equilateral square pyramid.

<span class="mw-page-title-main">Snub disphenoid</span> 84th Johnson solid (12 triangular faces)

In geometry, the snub disphenoid, Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron is a convex polyhedron with twelve equilateral triangles as its faces. It is not a regular polyhedron because some vertices have four faces and others have five. It is a dodecahedron, one of the eight deltahedra, and is the 84th Johnson solid. It can be thought of as a square antiprism where both squares are replaced with two equilateral triangles.

<span class="mw-page-title-main">Reflection symmetry</span> Invariance under a mathematical reflection

In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry.

<span class="mw-page-title-main">Pyramid (geometry)</span> Conic solid with a polygonal base

In geometry, a pyramid is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. It is a conic solid with polygonal base. A pyramid with an n-sided base has n + 1 vertices, n + 1 faces, and 2n edges. All pyramids are self-dual.

In geometry, a polytope or a tiling is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other while leaving the region occupied by the object unchanged.

<span class="mw-page-title-main">Pentagon</span> Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

<span class="mw-page-title-main">Kovner–Besicovitch measure</span>

In plane geometry the Kovner–Besicovitch measure is a number defined for any bounded convex set describing how close to being centrally symmetric it is. It is the fraction of the area of the set that can be covered by its largest centrally symmetric subset.

<span class="mw-page-title-main">Reinhardt polygon</span> Polygon with many longest diagonals

In geometry, a Reinhardt polygon is an equilateral polygon inscribed in a Reuleaux polygon. As in the regular polygons, each vertex of a Reinhardt polygon participates in at least one defining pair of the diameter of the polygon. Reinhardt polygons with sides exist, often with multiple forms, whenever is not a power of two. Among all polygons with sides, the Reinhardt polygons have the largest possible perimeter for their diameter, the largest possible width for their diameter, and the largest possible width for their perimeter. They are named after Karl Reinhardt, who studied them in 1922.

References

  1. 1 2 Lassak, Marek (2002), "Approximation of convex bodies by axially symmetric bodies", Proceedings of the American Mathematical Society , 130 (10): 3075–3084 (electronic), doi: 10.1090/S0002-9939-02-06404-3 , MR   1908932 . Erratum, doi : 10.1090/S0002-9939-03-07225-3.
  2. Krakowski, F. (1963), "Bemerkung zu einer Arbeit von W. Nohl", Elemente der Mathematik, 18: 60–61. As cited by de Valcourt (1966).
  3. Choi, Chang-Yul (2006), Finding the largest inscribed axially symmetric polygon for a convex polygon (PDF), Masters thesis, Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology.
  4. Nohl, W. (1962), "Die innere axiale Symmetrie zentrischer Eibereiche der euklidischen Ebene", Elemente der Mathematik, 17: 59–63. As cited by de Valcourt (1966).
  5. Buda, Andrzej B.; Mislow, Kurt (1991), "On a measure of axiality for triangular domains", Elemente der Mathematik, 46 (3): 65–73, MR   1113766 .
  6. Ahn, Hee-Kap; Brass, Peter; Cheong, Otfried; Na, Hyeon-Suk; Shin, Chan-Su; Vigneron, Antoine (2006), "Inscribing an axially symmetric polygon and other approximation algorithms for planar convex sets", Computational Geometry , 33 (3): 152–164, doi:10.1016/j.comgeo.2005.06.001, hdl: 10203/314 , MR   2188943 .
  7. Barequet, Gill; Rogol, Vadim (2007), "Maximizing the area of an axially symmetric polygon inscribed in a simple polygon" (PDF), Computers & Graphics, 31 (1): 127–136, doi:10.1016/j.cag.2006.10.006 .
  8. de Valcourt, B. Abel (1966), "Measures of axial symmetry for ovals", Israel Journal of Mathematics , 4 (2): 65–82, doi: 10.1007/BF02937452 , MR   0203589 .
  9. Marola, Giovanni (1989), "On the detection of the axes of symmetry of symmetric and almost symmetric planar images", IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (1): 104–108, doi:10.1109/34.23119