BRST algorithm

Last updated

Boender-Rinnooy-Stougie-Timmer algorithm (BRST) is an optimization algorithm suitable for finding global optimum of black box functions. In their paper Boender et al. [1] describe their method as a stochastic method involving a combination of sampling, clustering and local search, terminating with a range of confidence intervals on the value of the global minimum.

Contents

The algorithm of Boender et al. has been modified by Timmer. [2] Timmer considered several clustering methods. Based on experiments a method named "multi level single linkage" was deemed most accurate.

Csendes' algorithms [3] are implementations of the algorithm of [Boender et al.] [1] and originated the public domain software product GLOBAL. The local algorithms used are a random direction, linear search algorithm also used by Törn, and a quasi—Newton algorithm not using the derivative of the function. The results show the dependence of the result on the auxiliary local algorithm used.

Background

Extending the class of functions to include multimodal functions makes the global optimization problem unsolvable in general. In order to be solvable some smoothness condition on the function in addition to continuity must be known.

The existence of several local minima and unsolvability in general are important characteristics of global optimization. Unsolvability here means that a solution cannot be guaranteed in a finite number of steps. There are two ways to deal with the unsolvability problem. First, "a priori" conditions on f and A are posed which turns the problem into a solvable one or at least makes it possible to tell for sure that a solution has been found. This restricts the function class that is considered. The second approach which allows a larger class of objective functions to be considered is to give up the solvability requirement and only try to obtain an estimate of the global minimum. In this "probabilistic" approach it would be desirable also to obtain some results on the goodness of an obtained estimate. Some of the solvable problems may fall in this class because the number of steps required for a guaranteed solution might be prohibitively large.

When relaxing the requirement on solvability it seems rational to require that the probability that a solution is obtained approaches 1 if the procedure is allowed to continue forever. An obvious probabilistic global search procedure is to use a local algorithm starting from several points distributed over the whole optimization region. This procedure is named "Multistart". Multistart is certainly one of the earliest global procedures used. It has even been used in local optimization for increasing the confidence in the obtained solution. One drawback of Multistart is that when many starting points are used the same minimum will eventually be determined several times. In order to improve the efficiency of Multistart this should be avoided.

Clustering methods are used to avoid this repeated determination of local minima. This is realized in three steps which may be iteratively used. The three steps are:

If the procedure employing these steps is successful then starting a single local optimization from each cluster would determine the local minima and thus also the global minimum. The advantage in using this approach is that the work spared by computing each minimum just once can be spent on computations in (a) and (b), which will increase the probability that the global minimum will be found.

Being a clustering method, their effectiveness is higher for low-dimensional problems and become less effective for problems having a few hundred variables.

Related Research Articles

<span class="mw-page-title-main">Genetic algorithm</span> Competitive algorithm for searching a problem space

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, causal inference, etc.

<span class="mw-page-title-main">Mathematical optimization</span> Study of mathematical algorithms for optimization problems

Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

<span class="mw-page-title-main">Simulated annealing</span> Probabilistic optimization technique and metaheuristic

Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization problem. For large numbers of local optima, SA can find the global optima. It is often used when the search space is discrete. For problems where finding an approximate global optimum is more important than finding a precise local optimum in a fixed amount of time, simulated annealing may be preferable to exact algorithms such as gradient descent or branch and bound.

<span class="mw-page-title-main">Gradient descent</span> Optimization algorithm

Gradient descent is a method for unconstrained mathematical optimization. It is a first-order iterative algorithm for finding a local minimum of a differentiable multivariate function

In computer science, local search is a heuristic method for solving computationally hard optimization problems. Local search can be used on problems that can be formulated as finding a solution maximizing a criterion among a number of candidate solutions. Local search algorithms move from solution to solution in the space of candidate solutions by applying local changes, until a solution deemed optimal is found or a time bound is elapsed.

<span class="mw-page-title-main">Hill climbing</span> Optimization algorithm

In numerical analysis, hill climbing is a mathematical optimization technique which belongs to the family of local search. It is an iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a better solution by making an incremental change to the solution. If the change produces a better solution, another incremental change is made to the new solution, and so on until no further improvements can be found.

Global optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function .

In numerical analysis, stochastic tunneling (STUN) is an approach to global optimization based on the Monte Carlo method-sampling of the function to be objective minimized in which the function is nonlinearly transformed to allow for easier tunneling among regions containing function minima. Easier tunneling allows for faster exploration of sample space and faster convergence to a good solution.

<span class="mw-page-title-main">Local optimum</span> Mathematical concept

In applied mathematics and computer science, a local optimum of an optimization problem is a solution that is optimal within a neighboring set of candidate solutions. This is in contrast to a global optimum, which is the optimal solution among all possible solutions, not just those in a particular neighborhood of values. Importantly, a global optimum is necessarily a local optimum, but a local optimum is not necessarily a global optimum.

In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a subset of solutions which is otherwise too large to be completely enumerated or otherwise explored. Metaheuristics may make relatively few assumptions about the optimization problem being solved and so may be usable for a variety of problems.

<span class="mw-page-title-main">Newton's method in optimization</span> Method for finding stationary points of a function

In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function F, which are solutions to the equation F (x) = 0. As such, Newton's method can be applied to the derivative f of a twice-differentiable function f to find the roots of the derivative (solutions to f ′(x) = 0), also known as the critical points of f. These solutions may be minima, maxima, or saddle points; see section "Several variables" in Critical point (mathematics) and also section "Geometric interpretation" in this article. This is relevant in optimization, which aims to find (global) minima of the function f.

In computer science, the min-conflicts algorithm is a search algorithm or heuristic method to solve constraint satisfaction problems.

Stochastic optimization (SO) methods are optimization methods that generate and use random variables. For stochastic problems, the random variables appear in the formulation of the optimization problem itself, which involves random objective functions or random constraints. Stochastic optimization methods also include methods with random iterates. Some stochastic optimization methods use random iterates to solve stochastic problems, combining both meanings of stochastic optimization. Stochastic optimization methods generalize deterministic methods for deterministic problems.

As applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems, such as image smoothing, the stereo correspondence problem, image segmentation, object co-segmentation, and many other computer vision problems that can be formulated in terms of energy minimization. Many of these energy minimization problems can be approximated by solving a maximum flow problem in a graph. Under most formulations of such problems in computer vision, the minimum energy solution corresponds to the maximum a posteriori estimate of a solution. Although many computer vision algorithms involve cutting a graph, the term "graph cuts" is applied specifically to those models which employ a max-flow/min-cut optimization.

Parallel metaheuristic is a class of techniques that are capable of reducing both the numerical effort and the run time of a metaheuristic. To this end, concepts and technologies from the field of parallelism in computer science are used to enhance and even completely modify the behavior of existing metaheuristics. Just as it exists a long list of metaheuristics like evolutionary algorithms, particle swarm, ant colony optimization, simulated annealing, etc. it also exists a large set of different techniques strongly or loosely based in these ones, whose behavior encompasses the multiple parallel execution of algorithm components that cooperate in some way to solve a problem on a given parallel hardware platform.

<span class="mw-page-title-main">Iterated local search</span>

Iterated Local Search (ILS) is a term in applied mathematics and computer science defining a modification of local search or hill climbing methods for solving discrete optimization problems.

In computational engineering, Luus–Jaakola (LJ) denotes a heuristic for global optimization of a real-valued function. In engineering use, LJ is not an algorithm that terminates with an optimal solution; nor is it an iterative method that generates a sequence of points that converges to an optimal solution. However, when applied to a twice continuously differentiable function, the LJ heuristic is a proper iterative method, that generates a sequence that has a convergent subsequence; for this class of problems, Newton's method is recommended and enjoys a quadratic rate of convergence, while no convergence rate analysis has been given for the LJ heuristic. In practice, the LJ heuristic has been recommended for functions that need be neither convex nor differentiable nor locally Lipschitz: The LJ heuristic does not use a gradient or subgradient when one be available, which allows its application to non-differentiable and non-convex problems.

Variable neighborhood search (VNS), proposed by Mladenović & Hansen in 1997, is a metaheuristic method for solving a set of combinatorial optimization and global optimization problems. It explores distant neighborhoods of the current incumbent solution, and moves from there to a new one if and only if an improvement was made. The local search method is applied repeatedly to get from solutions in the neighborhood to local optima. VNS was designed for approximating solutions of discrete and continuous optimization problems and according to these, it is aimed for solving linear program problems, integer program problems, mixed integer program problems, nonlinear program problems, etc.

Probabilistic numerics is an active field of study at the intersection of applied mathematics, statistics, and machine learning centering on the concept of uncertainty in computation. In probabilistic numerics, tasks in numerical analysis such as finding numerical solutions for integration, linear algebra, optimization and simulation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.

References

  1. 1 2 Boender, C.G.E.; A.H.G. Rinnooy Kan; L. Strougie; G.T. Timmer (1982). "A stochastic method for global optimization" (PDF). Mathematical Programming. 22: 125–140. doi:10.1007/BF01581033. S2CID   5450000.
  2. Timmer, G.T. (1984). "Global optimization: A stochastic approach" (Ph.D. Thesis). Erasmus University Rotterdam.{{cite journal}}: Cite journal requires |journal= (help)
  3. Csendes, T. (1988). "Nonlinear parameter estimation by global optimization—Efficiency and reliability". Acta Cybernetica. 8 (4): 361–370.