Bacterial wilt of carnation

Last updated
Bacterial wilt of carnations
Bacterial wilt 2.jpg
Stem cracking symptoms caused by Burkholderia caryophilli on Dianthus caryophyllus (carnation). E. Hellmers, Royal Veterinary & Agricultural University, Bugwood.org - See more at: http://www.ipmimages.org/browse/detail.cfm?imgnum=0454009#sthash.CWGPvVR2.dpuf
Common namesBacterial wilt of carnations and bacterial stem crack of carnations
Causal agentsParaburkholderia caryophylli
HostsCarnations (Dianthus caryophyllus)
EPPO Code PSDMCA

Bacterial wilt of carnations is a bacterial disease caused by the plant pathogen Paraburkholderia caryophylli (often referred to as Burkholderia caryophylli). [1] Previously named Pseudomonas caryophilli, [2] the pathogen is an aerobic gram negative bacteria known for only being capable of entering its host through wounds. Once inside the host, it colonizes the vascular system and roots causing symptoms such as, internal stem cracking, yellowing of the leaves, wilting, and the development of cankers. [3] [4] As a bacterial disease, bacterial wilt of carnations can also be characterized by signs such as bacterial streaming, and bacterial ooze.

Contents

Hosts and symptoms

B. caryophylli infects many different species of the Dianthus plant genus. The species Dianthus barbatus (sweet William) and Dianthus alwoodii (allwoodii hybrids) can be infected through induced artificial inoculation in a lab setting, [5] however, the pathogen only naturally infects the species D. caryophyllus (carnation). If infected, the pathogen induces symptoms on the host such as the discoloration of leaves and stems; they become grayish-green with subsequent yellowing. This initial leaf and stem discoloration is usually followed by plant wilting and death. Stem bases may also show internodal stem cracking, developing into small areas of dead tissue, which grow slowly over years (cankers). Cutting diseased stems often reveals brownish-yellow bacterial ooze. [3] The wilting of the plant signifies the presence of rotten roots. This causes a significant decrease in the plants ability to anchor itself into the soil. Symptoms can take up to 2–3 years to surface. Visual symptoms are most readily seen in mature plants by inspection of aerial parts. [3] Although there may be an extended period of latency, once plants begin showing symptoms, death typically occurs within 1–2 months. The contraction of bacterial wilt of carnation is often followed by secondary fungal invasions and disease.[ citation needed ]

Diagnosis

To make a reliable diagnosis, multiple samples of stems should be examined (young and old) and isolation should be made from the diseased tissues. Microscopic observation of stem sections may show new growth around infected vessels, plugging of vessels, hardening of their walls, and necrosis. Since latent infections on cuttings cannot be readily detected, cuttings should be kept at a relatively high temperature to ensure maximum symptom expression. The bacterium can be detected by immunofluorescence staining (IFAS) and direct isolation on 96 microwell cell culture plate even in material with latent infection. [6] B. caryophylli has also been detected from inoculated carnation by PCR and LAMP (Loop-mediated isothermal amplification).[ citation needed ]

Disease cycle

Healthy carnation Pink carnation crop two.jpg
Healthy carnation

B. caryophylli is a soil borne bacterium that overwinters in the rhizosphere of soil forming close interactions with the host plant and soil itself. Additionally, it can also survive in infected host debris. B. caryophylli infects susceptible plants through wounds which are present at the base and the crown of the host. The successful dissemination of the bacterial infection can occur Pre and post-planting. Pre-planting dissemination occurs when the stems of Carnation flowers from the infected host are cut and placed in a water bed with healthy plants, before they are individually planted (the bacteria slowly spreads from one cutting to the next via free water). [7] Because of the possibility of transmission during the latent period, cuttings require cautious cultural measures. Post-planting dissemination may occur from one root system to the next via an existing canker in the infected plant. When the canker, which contains accumulated yellowish-brown bacterial slime, oozes out via an opening, the bacteria is released to the surrounding soil. B. caryophylli cannot travel long distances, and therefore, only infects neighboring plant roots systems. As the root system absorbs the nutrient and water from the soil, it also absorbs the soil-borne bacteria in the soil. Once inside the host, the bacterium aggregates towards the vascular system, finding its way to the phloem. It also blocks the xylem, cutting off the water circulation of the plant. Eventually, the roots are no longer able to anchor properly onto the soil. As the host plant wilts and dies, the bacteria overwinters in the host debris and soil.[ citation needed ]

Environment

The pathogen can infect at a wide range of temperatures, however, certain symptoms are temperature specific. Wilting symptoms are found more frequently in plants grown at high temperatures (>30 °C), whereas no symptoms or solely stem-cracking symptoms are more common at lower temperatures (< 20 °C). When soil temperatures are below 17 °C, a rapid multiplication of cells causes tension around the xylem and phloem. Inter-nodal stem cracks at the base of the plant also appear which later develop into deep cankers. [8] Protected environments (green house, small gardens, etc.) in which there are controlled growing conditions are deemed a more suitable growing environment for the pathogen, as opposed to unprotected environments such as open fields. Turf and sphagnum peat have been reported to be a suitable environment for B.caryophylli, and the use of these natural substrates may enhance spread, establishment, and survival of the pathogen. [7] Current cultural practices and general control measures are very effective in keeping the crop free from the bacterium in protected environments.[ citation needed ]

Management of the disease

B. caryophylli cannot be directly controlled by a chemical means, simply because no chemical products are available that can control the bacterial wilt of carnations. However, sanitary procedures can prevent further infestation. These procedures include but are not limited to picking up infected host debris and careful handling of tools. Checking for signs of infected plant before plant cutting and checking the soil for the presence of bacteria will ensure that further dissemination is significantly decreased, if not prevented. In checking for the presence of disease before further planting, induced high temperatures should be employed to accelerate bacterial growth and symptoms. At an early stage of disease, the “KPV-Metoden” testing method can be used to detect infections present in carnation cuttings. [8] Although there are no commercial varieties of Dianthus caryophyllus that are resistant to the bacterial pathogen, B. caryophylli, there are some wild species that may have genes which display a resistance. Under a testing method that used cut-root soaking to inoculate different species of Dianthus plants with B. caryophylli, D. capitatus spp. Andrzejowskianus and D. henteri were two wild type species which did not show any symptoms usually caused by B. caryophylli. Five other wild type species along with D. capitatus spp. Andrzejowskianus and D. henteri were also labeled as resistant due to a very low percentage of wilted plants. [9]

Importance

Bacterial wilt of carnations causes devastating losses for areas in which carnations play an important economic role. Its impact areas include the former Yugoslavia, Italy, Serbia, Montenegro, China Taiwan, India, South America, (Brazil, Colombia, and Uruguay), and the United States. It is one of the leading diseases which infect carnations in Japan; it has caused serious crop losses of carnations which are grown in warm districts. [10] It is because of the devastating effects in crop loss that breeding programs were initiated in 1988 by the National Institute of Floriculture Science (NIFS) Japan in search for resistance. [10] Bacterial Wilt of Carnation is also defined as an A2 quarantine pest by the European and Mediterranean Plant Protection Organization (EPPO). It has received this quarantine ranking based on the limited number of EPPO countries it has been reported in. At current, the loss it causes the EPPO region is very minor. The bacterial organism and disease have also been listed as a quarantine pest for Iran. [4]

Floriculture

Floriculture is the large-scale cultivation and farming of specific plants, such as flowering and ornamental plants, for various uses. These uses include gardening, floristry, and floral design. [11] Columbia has been noted in history as being one of the top international exporters of cut flowers, and being first in the exportation of carnations. [12] Diseases like bacterial wilt of carnation pose a serious threat to the Floriculture industry, and specifically to fresh cut flowers like carnations.[ citation needed ]

Related Research Articles

<i>Dianthus caryophyllus</i> Species of flowering plant

Dianthus caryophyllus, commonly known as carnation or clove pink, is a species of Dianthus native to the Mediterranean region. Its exact natural range is uncertain due to extensive cultivation over the last 2,000 years. Carnations are prized for their vibrant colors, delicate fringed petals, and enchanting fragrance.

<span class="mw-page-title-main">Texas root rot</span> Pathogenic fungus

Texas root rot is a disease that is fairly common in Mexico and the southwestern United States resulting in sudden wilt and death of affected plants, usually during the warmer months. It is caused by a soil-borne fungus named Phymatotrichopsis omnivora that attacks the roots of susceptible plants. It was first discovered in 1888 by Pammel and later named by Duggar in 1916.

<span class="mw-page-title-main">Fusarium wilt</span> Fungal plant disease

Fusarium wilt is a common vascular wilt fungal disease, exhibiting symptoms similar to Verticillium wilt. This disease has been investigated extensively since the early years of this century. The pathogen that causes Fusarium wilt is Fusarium oxysporum. The species is further divided into formae speciales based on host plant.

Northern root-knot nematode is a species of vegetable pathogens which produces tiny galls on around 550 crop and weed species. They invade root tissue after birth. Females are able to lay up to 1,000 eggs at a time in a large egg mass. By surviving harsh winters, they can survive in cold climates.

<span class="mw-page-title-main">Leaf spot</span> Damaged areas of leaves

A leaf spot is a limited, discoloured, diseased area of a leaf that is caused by fungal, bacterial or viral plant diseases, or by injuries from nematodes, insects, environmental factors, toxicity or herbicides. These discoloured spots or lesions often have a centre of necrosis. Symptoms can overlap across causal agents, however differing signs and symptoms of certain pathogens can lead to the diagnosis of the type of leaf spot disease. Prolonged wet and humid conditions promote leaf spot disease and most pathogens are spread by wind, splashing rain or irrigation that carry the disease to other leaves.

<span class="mw-page-title-main">Citrus canker</span> Species of bacterium

Citrus canker is a disease affecting Citrus species caused by the bacterium Xanthomonas. Infection causes lesions on the leaves, stems, and fruit of citrus trees, including lime, oranges, and grapefruit. While not harmful to humans, canker significantly affects the vitality of citrus trees, causing leaves and fruit to drop prematurely; a fruit infected with canker is safe to eat, but too unsightly to be sold. Citrus canker is mainly a leaf-spotting and rind-blemishing disease, but when conditions are highly favorable, it can cause defoliation, shoot dieback, and fruit drop.

<i>Dickeya dadantii</i> Disease-causing Gram Negative Bacillus

Dickeya dadantii is a gram-negative bacillus that belongs to the family Pectobacteriaceae. It was formerly known as Erwinia chrysanthemi but was reassigned as Dickeya dadantii in 2005. Members of this family are facultative anaerobes, able to ferment sugars to lactic acid, have nitrate reductase, but lack oxidases. Even though many clinical pathogens are part of the order Enterobacterales, most members of this family are plant pathogens. D. dadantii is a motile, nonsporing, straight rod-shaped cell with rounded ends, much like the other members of the genus, Dickeya. Cells range in size from 0.8 to 3.2 μm by 0.5 to 0.8 μm and are surrounded by numerous flagella (peritrichous).

<i>Ralstonia solanacearum</i> Disease bacteria of tomato family, others

Ralstonia solanacearum is an aerobic non-spore-forming, Gram-negative, plant pathogenic bacterium. R. solanacearum is soil-borne and motile with a polar flagellar tuft. It colonises the xylem, causing bacterial wilt in a very wide range of potential host plants. It is known as Granville wilt when it occurs in tobacco. Bacterial wilts of tomato, pepper, eggplant, and Irish potato caused by R. solanacearum were among the first diseases that Erwin Frink Smith proved to be caused by a bacterial pathogen. Because of its devastating lethality, R. solanacearum is now one of the more intensively studied phytopathogenic bacteria, and bacterial wilt of tomato is a model system for investigating mechanisms of pathogenesis. Ralstonia was until recently classified as Pseudomonas, with similarity in most aspects, except that it does not produce fluorescent pigment like Pseudomonas. The genomes from different strains vary from 5.5 Mb up to 6 Mb, roughly being 3.5 Mb of a chromosome and 2 Mb of a megaplasmid. While the strain GMI1000 was one of the first phytopathogenic bacteria to have its genome completed, the strain UY031 was the first R. solanacearum to have its methylome reported. Within the R. solanacearum species complex, the four major monophyletic clusters of strains are termed phylotypes, that are geographically distinct: phylotypes I-IV are found in Asia, the Americas, Africa, and Oceania, respectively.

Brenneria salicis is a Gram-negative bacterium that is pathogenic on plants.

<i>Clavibacter michiganensis</i> Species of bacterium

Clavibacter michiganensis is an aerobic non-sporulating Gram-positive plant pathogenic actinomycete of the genus Clavibacter. Clavibacter michiganensis has several subspecies. Clavibacter michiganensis subsp. michiganensis causes substantial economic losses worldwide by damaging tomatoes and potatoes.

Curtobacterium flaccumfaciens is a Gram-positive bacterium that causes disease on a variety of plants. Gram-positive bacteria characteristics include small irregular rods, lateral flagella, the ability to persist in aerobic environments, and cells containing catalase. In the interest of studying pathogenicity in plants, this species is broken down further into pathovars, which help to better describe the pathogen.

Xanthomonas arboricola is a species of bacteria. This phytopathogenic bacterium can cause disease in trees like Prunus, hazelnut and walnut.

Alternaria dianthi, sometimes known as carnation blight, is a fungal pathogen of the genus Dianthus. Alternaria dianthi infections begin as small circular or ovular spots on leaves and stems, which can be red, purple, brown, yellow or gray.

Xylophilus ampelinus is a species of bacteria that can cause plant disease. It is available from the NCPPB in the United Kingdom and other international culture collections such as ICMP in New Zealand, and LMG/BCCM in Belgium.

<i>Fusarium circinatum</i> Species of fungus

Fusarium circinatum is a fungal plant pathogen that causes the serious disease pitch canker on pine trees and Douglas firs. The most common hosts of the pathogen include slash pine, loblolly pine, Monterey pine, Mexican weeping pine, and Douglas fir. Like other Fusarium species in the phylum Ascomycota, it is the asexual reproductive state of the fungus and has a teleomorph, Gibberella circinata.

<i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> Species of bacterium

Xanthomonas campestris pv. vesicatoria is a bacterium that causes bacterial leaf spot (BLS) on peppers and tomatoes. It is a gram-negative and rod-shaped. It causes symptoms throughout the above-ground portion of the plant including leaf spots, fruit spots and stem cankers. Since this bacterium cannot live in soil for more than a few weeks and survives as inoculum on plant debris, removal of dead plant material and chemical applications to living plants are considered effective control mechanisms.

<span class="mw-page-title-main">Blackleg (potatoes)</span> Bacterial disease of potato plants

Blackleg is a plant disease of potato caused by pectolytic bacteria that can result in stunting, wilting, chlorosis of leaves, necrosis of several tissues, a decline in yield, and at times the death of the potato plant. The term "blackleg" originates from the typical blackening and decay of the lower stem portion, or "leg", of the plant.

<span class="mw-page-title-main">Collar rot</span> Disease of plants

Collar rot is a symptomatically described disease that is usually caused by any one of various fungal and oomycete plant pathogens. It is present where the pathogen causes a lesion localized at or about the collet between the stem and the root. The lesions develop around the stem eventually forming a "collar". Observationally, collar rot grades into "basal stem rot", and with some pathogens is the first phase of "basal stem rot" often followed by "root rot". Collar rot is most often observed in seedings grown in infected soil. The pathogens that cause collar rot may be species or genera specific. But generalist pathogens such as Agroathelia rolfsii are known to attack over 200 different species. While bacteria caused collar rot is not common, trees infected with Fire blight may develop collar rot. Non-parasitic collar rot may be caused by winter damage.

<i>Clavibacter insidiosus</i> Species of bacterium

Clavibacter insidiosus is a species of Clavibacter. It causes bacterial wilt, with its most notable host being Medicago sativa (alfalfa). Other species in the Medicago genus are also known to be hosts such as Medicago falcata. Additionally, Lotus corniculatus, Melilotus alba, Onobrychis viciifolia, and Trifolium sp. are known hosts.

Clavibacter sepedonicus is a species of bacteria in the genus Clavibacter. C. sepedonicus is a high-profile alien plant pathogen of A2 Quarantine status affecting only potatoes. It causes a disease in potatoes known as 'ring rot' due to the way it rots vascular tissue inside potato tubers It is present in parts of Europe but is under statutory control under 'Council Directive 93/85/EEC' of 4 October 1993 on the control of potato ring rot. This means that if an outbreak occurs, the outbreak must be controlled and if possible the disease has to be eradicated. If necessary, prohibitions are put into place to prevent further spread.

References

  1. Yagi, M; Kimura, T; Yamamoto, T; Isobe, S; Tabata, S; Onozaki, T (2012). "QTL Analysis For Resistance To Bacterial Wilt ( Burkholderia caryophylli) In Carnation ( Dianthus caryophyllus) Using An SSR-Based Genetic Linkage Map". Molecular Breeding. 30 (1): 495–509. doi:10.1007/s11032-011-9639-x. S2CID   14588994.
  2. Onozaki, T; Tanikawa, N; Taneya, M; Kudo, K; Funayama, T; Ikeda, H; Shibata, M (2004). "A RAPD-Derived STS Marker Is Linked To A Bacterial Wilt (Burkholderia caryophylli) Resistance Gene In Carnation". Euphytica. 138 (3): 255–262. doi:10.1023/b:euph.0000047099.48469.3c. S2CID   21112120.
  3. 1 2 3 "Burkholderia caryophylli". EPPO Bulletin. 36 (1): 95–98. Jun 2006. doi:10.1111/j.1365-2338.2006.00918.x.
  4. 1 2 Alipour, Yadolah. "A Guide for Diagnosis and Detection of Quarantine Pests: Bacterial wilt of carnation" (PDF). Bureau of Plant Pest Surveillance and Pest Risk Analysis. Archived from the original (PDF) on 12 November 2014. Retrieved 12 November 2014.
  5. "ABIS Encyclopedia". ABIS Encyclopedia. Retrieved 2014-10-20.
  6. Alipour, Yadolah (2013). "Bacterial Wilt of Carnation". Ministry of Jihad-e- Agriculture Plant Protection Organization.
  7. 1 2 "Scientific Opinion on the risk to plant health posed by Burkholderia caryophylli for the EU territory with the identification and evaluation of risk reduction options". EFSA Journal. 11 (1): 3071. 2013. doi:10.2903/j.efsa.2013.3070.
  8. 1 2 "Data Sheets on Quarantine Pests-Burkholderia caryophylli" (PDF). CABI and EPPO for the EU. Archived from the original (PDF) on 2014-10-22. Retrieved 2014-10-20.
  9. Takashi, Onoaki; Takashi, Yamaguchi; Masami, Himeno; Hiroshi, Ikeda (1999). "Evaluation of Wild Dianthus Accessions for Resistance to Bacterial Wilt (Pseudomonas caryophylli)". J. Japan Soc. Hort. Sci. 68 (5): 974–978. doi: 10.2503/jjshs.68.974 .
  10. 1 2 Onozaki, T; Ikeda, H; Yamaguchi, T; Himeno, M; Amano, M; Shibata, M (2002). "'Carnation Nou No.1', a carnation breeding line resistant to bacterial wilt (Burkholderia caryophylli)". Horticultural Research (Japan). 1 (1): 13–16. doi: 10.2503/hrj.1.13 . Retrieved 20 October 2014.
  11. Newman, SE (2011). Floriculture (PDF). Elsevier B.V. Archived from the original (PDF) on 20 October 2014. Retrieved 20 October 2014.
  12. Gomez, M (1992). "Carnations: The Main Product of Colombian Floriculture". Acta Hort. 307 (307): 173–180. doi:10.17660/ActaHortic.1992.307.22 . Retrieved 20 October 2014.