Balloon popping

Last updated
A popped balloon taken by high-speed photography Yellow balloon (3634757803).jpg
A popped balloon taken by high-speed photography

A balloon pops when the material that makes up its surface tears or shreds, creating a hole. [1] [2] Normally, there is a balance of the balloon skin's elastic tension in which every point on the balloon's surface is being pulled by the material surrounding it. However, if a hole is made on the balloon's surface, the force becomes imbalanced, since there is no longer any force exerted by the center of the hole on the material at its edge. As a result, the balloon's surface at the edge of the hole pulls away, making it bigger; the high pressure air can then escape through the hole and the balloon pops. [1] [2] A balloon can be popped by either physical or chemical actions. Limpanuparb et al. use popping a balloon as a demonstration to teach about physical and chemical hazards in laboratory safety. [3]

Contents

Physical

Balloon skewer experiment

A pin or needle is frequently used to pop a balloon. [4] As the needle or pin creates a hole on the balloon surface, the balloon pops. However, if tape is placed on the part where the hole is created, the balloon will not pop since the tape helps reinforce the elastic tension in that area, preventing the edges of the hole pulling away from the center. [5] Likewise, the thick spots of the balloon at the top and the bottom can be pierced by a needle, pin, or even skewer without the balloon popping. [3]

Chemical

Organic solvent

A balloon popped by toluene

Applying an organic solvent such as toluene onto a balloon's surface can pop it, since the solvent can partially dissolve the material making up the balloon's surface. [3]

cis-1,4-polyisoprene (solid) + organic solvent → cis-1,4-polyisoprene (partly dissolved) [3]

Baby oil can also be applied to water balloons to pop them. [6]

Orange peel

Orange peel contains a compound called limonene which is a hydrocarbon compound similar to the rubber that can be used to make balloons. Based on "like dissolves like" principle, rubber balloons can be dissolved by limonene, popping the balloon. If the balloon is vulcanized (hardened with sulfur), the balloon will not pop. [7]

See also

Related Research Articles

Paint Pigment applied over a surface that dries as a solid film

Paint is any pigmented liquid, liquefiable, or solid mastic composition that, after application to a substrate in a thin layer, converts to a solid film. It is most commonly used to protect, color, or provide texture to objects. Paint can be made or purchased in many colors—and in many different types, such as watercolor or synthetic. Paint is typically stored, sold, and applied as a liquid, but most types dry into a solid. Most paints are either oil-based or water-based and each have distinct characteristics. For one, it is illegal in most municipalities to discard oil-based paint down household drains or sewers. Clean up solvents are also different for water-based paint than they are for oil-based paint. Water-based paints and oil-based paints will cure differently based on the outside ambient temperature of the object being painted Usually the object being painted must be over 10 °C (50 °F), although some manufacturers of external paints/primers claim they can be applied when temperatures are as low as 2 °C (35 °F).

Toluene, also known as toluol, is an aromatic hydrocarbon. It is a colorless, water-insoluble liquid with the smell associated with paint thinners. It is a mono-substituted benzene derivative, consisting of a methyl group (CH3) attached to a phenyl group. As such, its systematic IUPAC name is methylbenzene. Toluene is predominantly used as an industrial feedstock and a solvent.

Solvent Substance dissolving a solute resulting in a solution

A solvent is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for polar molecules and the most common solvent used by living things; all the ions and proteins in a cell are dissolved in water within the cell.

Natural rubber Polymer harvested from certain trees

Rubber, also called India rubber, latex, Amazonian rubber, caucho, or caoutchouc, as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds. Thailand and Indonesia are two of the leading rubber producers. Types of polyisoprene that are used as natural rubbers are classified as elastomers.

Petrochemical Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

Elastomer

An elastomer is a polymer with viscoelasticity and with weak intermolecular forces, generally low Young's modulus and high failure strain compared with other materials. The term, a portmanteau of elastic polymer, is often used interchangeably with rubber, although the latter is preferred when referring to vulcanisates. Each of the monomers which link to form the polymer is usually a compound of several elements among carbon, hydrogen, oxygen and silicon. Elastomers are amorphous polymers maintained above their glass transition temperature, so that considerable molecular reconformation, without breaking of covalent bonds, is feasible. At ambient temperatures, such rubbers are thus relatively compliant and deformable. Their primary uses are for seals, adhesives and molded flexible parts. Application areas for different types of rubber are manifold and cover segments as diverse as tires, soles for shoes, and damping and insulating elements. The importance of these rubbers can be judged from the fact that global revenues are forecast to rise to US$56 billion in 2020.

Paint stripper

Paint stripper, or paint remover, is a chemical product designed to remove paint, finishes, and coatings while also cleaning the underlying surface.

Rubber cement Type of adhesive

Rubber cement is an adhesive made from elastic polymers mixed in a solvent such as acetone, hexane, heptane or toluene to keep it fluid enough to be used. This makes it part of the class of drying adhesives: as the solvents quickly evaporate, the rubber solidifies, forming a strong yet flexible bond.

A hermetic seal is any type of sealing that makes a given object airtight. The term originally applied to airtight glass containers, but as technology advanced it applied to a larger category of materials, including rubber and plastics. Hermetic seals are essential to the correct and safe functionality of many electronic and healthcare products. Used technically, it is stated in conjunction with a specific test method and conditions of use.

Limonene Chemical compound

Limonene is a colorless liquid aliphatic hydrocarbon classified as a cyclic monoterpene, and is the major component in the oil of citrus fruit peels. The D-isomer, occurring more commonly in nature as the fragrance of oranges, is a flavoring agent in food manufacturing. It is also used in chemical synthesis as a precursor to carvone and as a renewables-based solvent in cleaning products. The less common L-isomer is found in mint oils and has a piny, turpentine-like odor. The compound is one of the main volatile monoterpenes found in the resin of conifers, particularly in the Pinaceae, and of orange oil.

Supercritical fluid extraction (SFE) is the process of separating one component (the extractant) from another (the matrix) using supercritical fluids as the extracting solvent. Extraction is usually from a solid matrix, but can also be from liquids. SFE can be used as a sample preparation step for analytical purposes, or on a larger scale to either strip unwanted material from a product (e.g. decaffeination) or collect a desired product (e.g. essential oils). These essential oils can include limonene and other straight solvents. Carbon dioxide (CO2) is the most used supercritical fluid, sometimes modified by co-solvents such as ethanol or methanol. Extraction conditions for supercritical carbon dioxide are above the critical temperature of 31 °C and critical pressure of 74 bar. Addition of modifiers may slightly alter this. The discussion below will mainly refer to extraction with CO2, except where specified.

Household chemicals

Household chemicals are non-food chemicals that are commonly found and used in and around the average household. They are a type of consumer goods, designed particularly to assist cleaning, house and yard maintenance, cooking, pest control and general hygiene purposes often stored in the kitchen or garage.

Orange oil

Orange oil is an essential oil produced by cells within the rind of an orange fruit. In contrast to most essential oils, it is extracted as a by-product of orange juice production by centrifugation, producing a cold-pressed oil. It is composed of mostly d-limonene, and is often used in place of pure d-limonene. D-limonene can be extracted from the oil by distillation.

Pressure-sensitive adhesive

Pressure-sensitive adhesive is a type of non reactive adhesive which forms a bond when pressure is applied to bond the adhesive with a surface. No solvent, water, or heat is needed to activate the adhesive. It is used in pressure-sensitive tapes, labels, glue dots, note pads, automobile trim, and a wide variety of other products.

Fragrance extraction

Fragrance extraction refers to the separation process of aromatic compounds from raw materials, using methods such as distillation, solvent extraction, expression, sieving, or enfleurage. The results of the extracts are either essential oils, absolutes, concretes, or butters, depending on the amount of waxes in the extracted product.

Blue bottle experiment

The blue bottle experiment is a color-changing redox chemical reaction. An aqueous solution containing glucose, sodium hydroxide, methylene blue is prepared in a closed bottle containing some air. Upon standing, it spontaneously turns from blue to colorless due to reduction of methylene blue by the alkaline glucose solution. However, shaking the bottle oxidizes methylene blue back into its blue form. With further shaking, this color-change cycle can be repeated many times. This experiment is a classic chemistry demonstration that can be used in laboratory courses as a general chemistry experiment to study chemical kinetics and reaction mechanism. The reaction also works with other reducing agents besides glucose and other redox indicator dyes besides methylene blue.

In chemistry, solvent effects are the influence of a solvent on chemical reactivity or molecular associations. Solvents can have an effect on solubility, stability and reaction rates and choosing the appropriate solvent allows for thermodynamic and kinetic control over a chemical reaction.

Conservation and restoration of ceramic objects

Conservation and restoration of ceramic objects is a process dedicated to the preservation and protection of objects of historical and personal value made from ceramic. Typically this activity of conservation-restoration is undertaken by a conservator-restorer, especially when dealing with an object of cultural heritage. Ceramics are created from a production of coatings of inorganic, nonmetallic materials using heating and cooling to create a glaze. Typically the coatings are permanent and sustainable for utilitarian and decorative purposes. The cleaning, handling, storage, and in general treatment of ceramics is consistent with that of glass because they are made of similar oxygen-rich components, such as silicates. In conservation ceramics are broken down into three groups: unfired clay, earthenware or terracotta, and stoneware and porcelain.

Total Base Number (TBN) is a measurement of basicity that is expressed in terms of klk number of milligrams of potassium hydroxide per gram of oil sample. TBN is an important measurement in petroleum products, and the value varies depending on its application. TBN generally ranges from 6–8 mg KOH/g in modern lubricants, 7–10 mg KOH/g for general internal combustion engine use and 10–15 mg KOH/g for diesel engine operations. TBN is typically higher for marine grade lubricants, approximately 15-80 mg KOH/g, as the higher TBN values are designed to increase the operating period under harsh operating conditions, before the lubricant requires replacement.

Polytetrafluoroethylene (PTFE), better known by its trade name Teflon, has many desirable properties which make it an attractive material for numerous industries. It has good chemical resistance, a low dielectric constant, low dielectric loss, and a low coefficient of friction, making it ideal for reactor linings, circuit boards, and kitchen utensils, to name a few applications. However, its nonstick properties make it challenging to bond to other materials or to itself.

References

  1. 1 2 Staple, M. "Why do balloons go bang when they're popped?". Science Focus.
  2. 1 2 Ashish (12 Dec 2019). "Why Does A Balloon Pop When Pricked With A Needle?". Science ABC.
  3. 1 2 3 4 Limpanuparb, T.; Sathainthammanee, D.; Pakwilaikiat, P.; Kaewpichit, C.; Yimkosol, W.; Suwannakhan, A. (2021). "Reinterpreting Popular Demonstrations for Use in a Laboratory Safety Session That Engages Students in Observation, Prediction, Record Keeping, and Problem Solving". Journal of Chemical Education. 98: 191–197. doi:10.1021/acs.jchemed.9b00474.
  4. "A needle in a balloon". Educatall.com.
  5. "Why doesn't a balloon pop when you put a sticker on it?". UCSB ScienceLine. 11 Mar 2006.
  6. Fleming, D. (14 Nov 2014). "Perturbed polymers". Royal Society of Chemistry.
  7. Kuntzleman, T. (24 Mar 2015). "How Does an Orange Peel Pop a Balloon? Chemistry, of Course!". Chem Ed X.