Balmer jump

Last updated
Balmer discontinuity on the observational spectrum of the star Icarus. The jump in this plot appears around 920 nm (instead of the intrinsic 364.5 nm) due to cosmological redshift. NASA-Icarus-BlueSuperGiantSpectrum-Hubble-20180402.png
Balmer discontinuity on the observational spectrum of the star Icarus. The jump in this plot appears around 920 nm (instead of the intrinsic 364.5 nm) due to cosmological redshift.
Balmer jump of two stars: Epsilon Orionis (O9.7 V) on the top and Beta Tauri (B7 III) on the bottom. The vertical blue line represents the limit of the Balmer series. Balmerov skok EA.jpg
Balmer jump of two stars: Epsilon Orionis (O9.7 V) on the top and Beta Tauri (B7 III) on the bottom. The vertical blue line represents the limit of the Balmer series.

The Balmer jump, Balmer discontinuity, or Balmer break is the difference of intensity of the stellar continuum spectrum on either side of the limit of the Balmer series of hydrogen, at approximately 364.5 nm. It is caused by electrons being completely ionized directly from the second energy level of a hydrogen atom (bound-free absorption), which creates a continuum absorption at wavelengths shorter than 364.5 nm. [1]

In some cases the Balmer discontinuity can show continuum emission, usually when the Balmer lines themselves are strongly in emission. [2] [3] Other hydrogen spectral series also show bound-free absorption and hence a continuum discontinuity, but the Balmer jump in the near UV has been the most observed. [4] [5]

The strength of the continuum absorption, and hence the size of the Balmer jump, depends on temperature and density in the region responsible for the absorption. At cooler stellar temperatures, the density most strongly affects the strength of the discontinuity and this can be used to classify stars on the basis of their surface gravity and hence luminosity. [6] This effect is strongest in A class stars, but in hotter stars temperature has a much larger effect on the Balmer jump than surface gravity. [2] [7]

See also

Related Research Articles

<span class="mw-page-title-main">Stellar classification</span> Classification of stars based on spectral properties

In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature.

<span class="mw-page-title-main">Eta Carinae</span> Stellar system in the constellation Carina

Eta Carinae, formerly known as Eta Argus, is a stellar system containing at least two stars with a combined luminosity greater than five million times that of the Sun, located around 7,500 light-years distant in the constellation Carina. Previously a 4th-magnitude star, it brightened in 1837 to become brighter than Rigel, marking the start of its so-called "Great Eruption". It became the second-brightest star in the sky between 11 and 14 March 1843 before fading well below naked-eye visibility after 1856. In a smaller eruption, it reached 6th magnitude in 1892 before fading again. It has brightened consistently since about 1940, becoming brighter than magnitude 4.5 by 2014.

<span class="mw-page-title-main">Red supergiant</span> Stars with a supergiant luminosity class with a spectral type of K or M

Red supergiants (RSGs) are stars with a supergiant luminosity class of spectral type K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Antares A are the brightest and best known red supergiants (RSGs), indeed the only first magnitude red supergiant stars.

The Eddington luminosity, also referred to as the Eddington limit, is the maximum luminosity a body can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The state of balance is called hydrostatic equilibrium. When a star exceeds the Eddington luminosity, it will initiate a very intense radiation-driven stellar wind from its outer layers. Since most massive stars have luminosities far below the Eddington luminosity, their winds are mostly driven by the less intense line absorption. The Eddington limit is invoked to explain the observed luminosity of accreting black holes such as quasars.

<span class="mw-page-title-main">Wolf–Rayet star</span> Heterogeneous class of stars with unusual spectra

Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of ionised helium and highly ionised nitrogen or carbon. The spectra indicate very high surface enhancement of heavy elements, depletion of hydrogen, and strong stellar winds. The surface temperatures of known Wolf–Rayet stars range from 20,000 K to around 210,000 K, hotter than almost all other kinds of stars. They were previously called W-type stars referring to their spectral classification.

<span class="mw-page-title-main">Astronomical spectroscopy</span> Study of astronomy using spectroscopy to measure the spectrum of electromagnetic radiation

Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance and luminosity. Spectroscopy can show the velocity of motion towards or away from the observer by measuring the Doppler shift. Spectroscopy is also used to study the physical properties of many other types of celestial objects such as planets, nebulae, galaxies, and active galactic nuclei.

The Balmer series, or Balmer lines in atomic physics, is one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered by Johann Balmer in 1885.

<span class="mw-page-title-main">Reionization</span> Process that caused matter to reionize early in the history of the Universe

In the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages".

<span class="mw-page-title-main">Subgiant</span> Type of star larger than main-sequence but smaller than a giant

A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star.

<span class="mw-page-title-main">B-type main-sequence star</span> Stellar classification distinguished by bright blue luminosity

A B-type main-sequence star is a main-sequence (hydrogen-burning) star of spectral type B and luminosity class V. These stars have from 2 to 16 times the mass of the Sun and surface temperatures between 10,000 and 30,000 K. B-type stars are extremely luminous and blue. Their spectra have strong neutral helium absorption lines, which are most prominent at the B2 subclass, and moderately strong hydrogen lines. Examples include Regulus, Algol A and Acrux

<span class="mw-page-title-main">Hydrogen spectral series</span> Important atomic emission spectra

The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom. The classification of the series by the Rydberg formula was important in the development of quantum mechanics. The spectral series are important in astronomical spectroscopy for detecting the presence of hydrogen and calculating red shifts.

<span class="mw-page-title-main">Yellow hypergiant</span> Class of massive star with a spectral type of A to K

A yellow hypergiant (YHG) is a massive star with an extended atmosphere, a spectral class from A to K, and, starting with an initial mass of about 20–60 solar masses, has lost as much as half that mass. They are amongst the most visually luminous stars, with absolute magnitude (MV) around −9, but also one of the rarest, with just 20 known in the Milky Way and six of those in just a single cluster. They are sometimes referred to as cool hypergiants in comparison with O- and B-type stars, and sometimes as warm hypergiants in comparison with red supergiants.

<span class="mw-page-title-main">IK Pegasi</span> Star in the constellation Pegasus

IK Pegasi is a binary star system in the constellation Pegasus. It is just luminous enough to be seen with the unaided eye, at a distance of about 154 light years from the Solar System.

Z Andromedae is a binary star system consisting of a red giant and a white dwarf. It is the prototype of a type of cataclysmic variable star known as symbiotic variable stars or simply Z Andromedae variables. The brightness of those stars vary over time, showing a quiescent, more stable phase and then an active one with a more pronounced variability and stronger brightening and/or dimming.

<span class="mw-page-title-main">R136a1</span> Wolf–Rayet star with one of the highest mass and luminosity of any known star

R136a1 is one of the most massive and luminous stars known, at nearly 200 M and nearly 4.7 million L, and is also one of the hottest, at around 46,000 K. It is a Wolf–Rayet star at the center of R136, the central concentration of stars of the large NGC 2070 open cluster in the Tarantula Nebula in the Large Magellanic Cloud. The cluster can be seen in the far southern celestial hemisphere with binoculars or a small telescope, at magnitude 7.25. R136a1 itself is 100 times fainter than the cluster and can only be resolved using speckle interferometry.

<span class="mw-page-title-main">AB7</span> Binary star in the Small Magellanic Cloud in the constellation Tucana

AB7, also known as SMC WR7, is a binary star in the Small Magellanic Cloud. A Wolf–Rayet star and a supergiant companion of spectral type O orbit in a period of 19.56 days. The system is surrounded by a ring-shaped nebula known as a bubble nebula.

<span class="mw-page-title-main">Iron(I) hydride</span> Chemical compound

Iron(I) hydride, systematically named iron hydride and poly(hydridoiron) is a solid inorganic compound with the chemical formula (FeH)
n
(also written ([FeH])
n
or FeH). It is both thermodynamically and kinetically unstable toward decomposition at ambient temperature, and as such, little is known about its bulk properties.

<span class="mw-page-title-main">Calcium monohydride</span> Chemical compound

Calcium monohydride is a molecule composed of calcium and hydrogen with formula CaH. It can be found in stars as a gas formed when calcium atoms are present with hydrogen atoms.

<span class="mw-page-title-main">AB8 (star)</span> Binary star located in the Small Magellanic Cloud in the constellation Hydrus

AB8, also known as SMC WR8, is a binary star in the Small Magellanic Cloud (SMC). A Wolf-Rayet star and a main sequence companion of spectral type O orbit in a period of 16.638 days. It is one of only nine known WO stars, the only Wolf-Rayet star in the SMC not on the nitrogen sequence, and the only Wolf-Rayet star in the SMC outside the main bar.

<span class="mw-page-title-main">Hydrogen-deficient star</span> Star that has little or no hydrogen in its atmosphere

A hydrogen-deficient star is a type of star that has little or no hydrogen in its atmosphere. Hydrogen deficiency is unusual in a star, as hydrogen is typically the most common element in a stellar atmosphere. Despite being rare, there are a variety of star types that display a hydrogen deficiency.

References

  1. Mihalas, Dimitri (1967). "Statistical-Equilibrium Model Atmospheres for Early-Type Stars. I. Hydrogen Continua". Astrophysical Journal. 149: 169. Bibcode:1967ApJ...149..169M. doi: 10.1086/149239 .
  2. 1 2 Slettebak, A.; Stock, J. (1957). "Classification of Early Type Stars of High Luminosity with Objective Prism Spectra of Low Dispersion. With 7 figures". Zeitschrift für Astrophysik. 42: 67. Bibcode:1957ZA.....42...67S.
  3. Knigge, Christian; Long, Knox S.; Wade, Richard A.; Baptista, Raymundo; Horne, Keith; Hubeny, Ivan; Rutten, Rene G. M. (1998). "Hubble Space Telescope Eclipse Observations of the Nova‐like Cataclysmic Variable UX Ursae Majoris". The Astrophysical Journal. 499 (1): 414–428. arXiv: astro-ph/9801206 . Bibcode:1998ApJ...499..414K. doi:10.1086/305617.
  4. Liu, X.-W.; Danziger, J. (1993). "Electron temperature determination from nebular continuum emission in planetary nebulae and the importance of temperature fluctuations". Monthly Notices of the Royal Astronomical Society. 263: 256–266. Bibcode:1993MNRAS.263..256L. doi: 10.1093/mnras/263.1.256 .
  5. Scargle, J. D.; Erickson, E. F.; Witteborn, F. C.; Strecker, D. W. (1978). "Infrared excesses in early-type stars - Gamma Cassiopeiae". Astrophysical Journal. 224: 527. Bibcode:1978ApJ...224..527S. doi:10.1086/156400.
  6. Bessell, Michael S. (2007). "Measuring the Balmer Jump and the Effective Gravity in FGK Stars". Publications of the Astronomical Society of the Pacific. 119 (856): 605–615. arXiv: 0706.2739 . Bibcode:2007PASP..119..605B. doi:10.1086/519981.
  7. Crowther, P. A. (1997). "The effective temperatures of hot stars". International Astronomical Union Symposium. 189: 137–146. Bibcode:1997IAUS..189..137C. doi: 10.1017/S0074180900116614 .