Band brake

Last updated
Broms, fig 3, Nordisk familjebok.png
A band brake fitted to an 1873 steam locomotive of the Rigi Railways Rigi bahn brak.jpg
A band brake fitted to an 1873 steam locomotive of the Rigi Railways

A band brake is a primary or secondary brake, consisting of a band of friction material that tightens concentrically around a cylindrical piece of equipment or train wheel to either prevent it from rotating (a static or "holding" brake), or to slow it (a dynamic brake).

Contents

Uses

Band brake for rear wheel of a bicycle Band-brake (for bicycle rear wheel)b.jpg
Band brake for rear wheel of a bicycle
A GE electric motor with band brake to control its speed DETAIL OF GENERAL ELECTRIC 250-HP SYNCHRONOUS MOTOR FROM SLIP RING END. NOTE BOLTS AND SPRINGS OF BRAKE BAND, HEAVY-WIRE ARMATURE WINDINGS, AND TIGHTLY WOUND STATOR (FIELD) COILS. - HAER CO-91-92.tif
A GE electric motor with band brake to control its speed

Band brakes were common on winch drums and chain saws and is also used for some bicycle brakes. [1]

Band brakes were commonly used to control the winding drum on railway inclines that lowered loaded wagons while raising empty ones over a steep slope. [2] [3]

A former application was the locking of gear rings in epicyclic gearing. In modern automatic transmissions this task has been largely taken over by multiple-plate clutches or multiple-plate brakes. [4]

Features

A band brake is a flexible band which warps around part or all of the outside surface of a wheel or drum. One end of the band is anchored in place, while the other is attached to a lever. Pressing on the lever brings the band into contact with the surface of the wheel and the friction causes the wheel's rotation to slow. [5]

Band brakes can be simple, compact, rugged, and can generate high force with a light input force. However, band brakes are prone to grabbing or chatter and loss of brake force when hot. These problems are inherent with the design and thus limit where band brakes are a good solution.

Effectiveness

One way to describe the effectiveness of the brake is as , where is the coefficient of friction between band and drum, and is the angle of wrap. With a large , the brake is very effective and requires low input force to achieve high brake force, but is also very sensitive to changes in . For example, light rust on the drum may cause the brake to "grab" or chatter, water may cause the brake to slip, and rising temperatures in braking may cause the coefficient of friction to drop slightly but in turn cause brake force to drop greatly. Using a band material with low increases the input force required to achieve a given brake force, but some low- materials also have more consistent across the range of working temperatures.

See also

Related Research Articles

<span class="mw-page-title-main">Clutch</span> Mechanical device that connects and disconnects two rotating shafts or other moving parts

A clutch is a mechanical device that allows an output shaft to be disconnected from a rotating input shaft. The clutch's input shaft is typically attached to a motor, while the clutch's output shaft is connected to the mechanism that does the work.

<span class="mw-page-title-main">Friction</span> Force resisting sliding motion

Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of the processes involved is called tribology, and has a history of more than 2000 years.

Mechanical advantage is a measure of the force amplification achieved by using a tool, mechanical device or machine system. The device trades off input forces against movement to obtain a desired amplification in the output force. The model for this is the law of the lever. Machine components designed to manage forces and movement in this way are called mechanisms. An ideal mechanism transmits power without adding to or subtracting from it. This means the ideal machine does not include a power source, is frictionless, and is constructed from rigid bodies that do not deflect or wear. The performance of a real system relative to this ideal is expressed in terms of efficiency factors that take into account departures from the ideal.

<span class="mw-page-title-main">Torque</span> Turning force around an axis

In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force. The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M. Just as a linear force is a push or a pull applied to a body, a torque can be thought of as a twist applied to an object with respect to a chosen point; for example, driving a screw uses torque, which is applied by the screwdriver rotating around its axis. A force of three newtons applied two metres from the fulcrum, for example, exerts the same torque as a force of one newton applied six metres from the fulcrum.

<span class="mw-page-title-main">Lever</span> Simple machine consisting of a beam pivoted at a fixed hinge

A lever is a simple machine consisting of a beam or rigid rod pivoted at a fixed hinge, or fulcrum. A lever is a rigid body capable of rotating on a point on itself. On the basis of the locations of fulcrum, load and effort, the lever is divided into three types. It is one of the six simple machines identified by Renaissance scientists. A lever amplifies an input force to provide a greater output force, which is said to provide leverage, which is mechanical advantage gained in the system, equal to the ratio of the output force to the input force. As such, the lever is a mechanical advantage device, trading off force against movement.

<span class="mw-page-title-main">Inclined plane</span> Tilted flat supporting surface

An inclined plane, also known as a ramp, is a flat supporting surface tilted at an angle from the vertical direction, with one end higher than the other, used as an aid for raising or lowering a load. The inclined plane is one of the six classical simple machines defined by Renaissance scientists. Inclined planes are used to move heavy loads over vertical obstacles. Examples vary from a ramp used to load goods into a truck, to a person walking up a pedestrian ramp, to an automobile or railroad train climbing a grade.

<span class="mw-page-title-main">Drum brake</span> Type of vehicle brake

A drum brake is a brake that uses friction caused by a set of shoes or pads that press outward against a rotating bowl-shaped part called a brake drum.

<span class="mw-page-title-main">Bicycle brake</span> Braking device for bicycles

A bicycle brake reduces the speed of a bicycle or prevents the wheels from moving. The two main types are: rim brakes and disc brakes. Drum brakes are less common on bicycles.

Tribology is the science and engineering of understanding friction, lubrication and wear phenomena for interacting surfaces in relative motion. It is highly interdisciplinary, drawing on many academic fields, including physics, chemistry, materials science, mathematics, biology and engineering. The fundamental objects of study in tribology are tribosystems, which are physical systems of contacting surfaces. Subfields of tribology include biotribology, nanotribology and space tribology. It is also related to other areas such as the coupling of corrosion and tribology in tribocorrosion and the contact mechanics of how surfaces in contact deform. Approximately 20% of the total energy expenditure of the world is due to the impact of friction and wear in the transportation, manufacturing, power generation, and residential sectors.

<span class="mw-page-title-main">Angle of repose</span> Steepest angle at which granular materials can be piled before slumping

The angle of repose, or critical angle of repose, of a granular material is the steepest angle of descent or dip relative to the horizontal plane on which the material can be piled without slumping. At this angle, the material on the slope face is on the verge of sliding. The angle of repose can range from 0° to 90°. The morphology of the material affects the angle of repose; smooth, rounded sand grains cannot be piled as steeply as can rough, interlocking sands. The angle of repose can also be affected by additions of solvents. If a small amount of water is able to bridge the gaps between particles, electrostatic attraction of the water to mineral surfaces increases the angle of repose, and related quantities such as the soil strength.

<span class="mw-page-title-main">Rolling resistance</span> Force resisting the motion when a body rolls on a surface

Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation of the wheel, roadbed, etc., is recovered when the pressure is removed. Two forms of this are hysteresis losses, and permanent (plastic) deformation of the object or the surface. Note that the slippage between the wheel and the surface also results in energy dissipation. Although some researchers have included this term in rolling resistance, some suggest that this dissipation term should be treated separately from rolling resistance because it is due to the applied torque to the wheel and the resultant slip between the wheel and ground, which is called slip loss or slip resistance. In addition, only the so-called slip resistance involves friction, therefore the name "rolling friction" is to an extent a misnomer.

<span class="mw-page-title-main">Balance wheel</span> Time measuring device

A balance wheel, or balance, is the timekeeping device used in mechanical watches and small clocks, analogous to the pendulum in a pendulum clock. It is a weighted wheel that rotates back and forth, being returned toward its center position by a spiral torsion spring, known as the balance spring or hairspring. It is driven by the escapement, which transforms the rotating motion of the watch gear train into impulses delivered to the balance wheel. Each swing of the wheel allows the gear train to advance a set amount, moving the hands forward. The balance wheel and hairspring together form a harmonic oscillator, which due to resonance oscillates preferentially at a certain rate, its resonant frequency or "beat", and resists oscillating at other rates. The combination of the mass of the balance wheel and the elasticity of the spring keep the time between each oscillation or "tick" very constant, accounting for its nearly universal use as the timekeeper in mechanical watches to the present. From its invention in the 14th century until tuning fork and quartz movements became available in the 1960s, virtually every portable timekeeping device used some form of balance wheel.

Brake fade is the reduction in stopping power that can occur after repeated or sustained application of the brakes of a vehicle, especially in high load or high speed conditions. Brake fade can be a factor in any vehicle that utilizes a friction braking system including automobiles, trucks, motorcycles, airplanes, and bicycles.

<span class="mw-page-title-main">Mousetrap car</span>

A mousetrap car is a small vehicle whose only source of motive power is a mousetrap. Variations include the use of multiple traps, or very big rat traps, for added power.

<span class="mw-page-title-main">Balance spring</span>

A balance spring, or hairspring, is a spring attached to the balance wheel in mechanical timepieces. It causes the balance wheel to oscillate with a resonant frequency when the timepiece is running, which controls the speed at which the wheels of the timepiece turn, thus the rate of movement of the hands. A regulator lever is often fitted, which can be used to alter the free length of the spring and thereby adjust the rate of the timepiece.

<span class="mw-page-title-main">Brake lining</span> Consumable surfaces in brake systems

Brake linings are the consumable surfaces in brake systems, such as drum brakes and disc brakes used in transport vehicles.

<span class="mw-page-title-main">Anchor windlass</span> Weightlifting device inside ships

A windlass is a machine used on ships that is used to let-out and heave-up equipment such as a ship's anchor or a fishing trawl. On some ships, it may be located in a specific room called the windlass room.

A banked turn is a turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn. For a road or railroad this is usually due to the roadbed having a transverse down-slope towards the inside of the curve. The bank angle is the angle at which the vehicle is inclined about its longitudinal axis with respect to the horizontal.

<span class="mw-page-title-main">Bicycle and motorcycle dynamics</span> Science behind the motion of bicycles and motorcycles

Bicycle and motorcycle dynamics is the science of the motion of bicycles and motorcycles and their components, due to the forces acting on them. Dynamics falls under a branch of physics known as classical mechanics. Bike motions of interest include balancing, steering, braking, accelerating, suspension activation, and vibration. The study of these motions began in the late 19th century and continues today.

Sliding is a type of motion between two surfaces in contact. This can be contrasted to rolling motion. Both types of motion may occur in bearings.

References

  1. Atkins, Tony; Escudier, Marcel, eds. (2013). "Band Brake". A Dictionary of Mechanical Engineering. Oxford University Press. ISBN   9780191752308 . Retrieved 1 February 2024.
  2. Apparatus and processes of mechanical industries, civil engineering, etc. U.S. Government Printing Office. 1891. p. 293-296.
  3. Quine, Dan (April 2022). "The Mysteries of Cae Abaty: Part One: Historical Overview". Archive: The Quarterly Journal of British Industrial and Transport History (113): 3–12.
  4. Nunney, Malcolm James (2007). Light and Heavy Vehicle Technology. Butterworth-Heinemann. p. 336. ISBN   9780750680370.
  5. Sharma, C.S.; Purohit, Kamlesh (1 January 2006). Theory of Mechanisms and Machines. PHI Learning Pvt. Ltd. pp. 250=260. ISBN   978-81-203-2901-0.