RFC 2638 from the IETF defines the entity of the Bandwidth Broker (BB) in the framework of differentiated services (DiffServ). According to RFC 2638, a Bandwidth Broker is an agent that has some knowledge of an organization's priorities and policies and allocates quality of service (QoS) resources with respect to those policies. In order to achieve an end-to-end allocation of resources across separate domains, the Bandwidth Broker managing a domain will have to communicate with its adjacent peers, which allows end-to-end services to be constructed out of purely bilateral agreements. Admission control is one of the main tasks that a Bandwidth Broker has to perform, in order to decide whether an incoming resource reservation request will be accepted or not. Most Bandwidth Brokers use simple admission control modules, although there are also proposals for more sophisticated admission control according to several metrics such as acceptance rate, network utilization, etc. The BB acts as a Policy Decision Point (PDP) in deciding whether to allow or reject a flow, whilst the edge routers acts as Policy Enforcement Points (PEPs) to police traffic (allowing and marking packets, or simply dropping them).
DiffServ allows two carrier services apart from the default best-effort service: Assured Forwarding (AF) [1] and Expedited Forwarding (EF). [2] AF provides a better-than-best-effort service, but is similar to best-effort traffic in that bursts and packet delay variation (PDV) are to be expected. Out of profile AF packets are given a lower priority by being marked as best effort traffic. EF provides a virtual wire service with traffic shaping to prevent bursts, strict admission control (out of profile packets are dropped) and a separate queue for EF traffic in the core routers, which together keep queues small and avoid the need for buffer management. The resulting EF service is low loss, low delay and low PDV. Hence although loosely a BB allocates bandwidth, really it allocates carrier services (i.e. QoS resources).
Bandwidth Brokers can be configured with organizational policies, keep track of the current allocation of marked traffic, and interpret new requests to mark traffic in light of the policies and current allocation. Bandwidth Brokers only need to establish relationships of limited trust with their peers in adjacent domains, unlike schemes that require the setting of flow specifications in routers throughout an end-to-end path. In practical technical terms, the Bandwidth Broker architecture makes it possible to keep state on an administrative domain basis, rather than at every router, and the DiffServ architecture makes it possible to confine per flow state to just the edge or leaf routers.
The scope of BBs has expanded and they are now not restricted to DiffServ domains. As long as the underlying QoS mechanism can be mapped to DiffServ behaviour, then a BB can understand it and communicate with its adjacent peers, i.e. the 'lingua franca' of QoS in the Internet should be DiffServ. There may be more than one BB in a domain, though if there are, RFC 2638 envisages that only one BB will function as the top-level inter-domain BB.
Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.
Quality of service (QoS) is the description or measurement of the overall performance of a service, such as a telephony or computer network or a cloud computing service, particularly the performance seen by the users of the network. To quantitatively measure quality of service, several related aspects of the network service are often considered, such as packet loss, bit rate, throughput, transmission delay, availability, jitter, etc.
A router is a networking device that forwards data packets between computer networks. Routers perform the traffic directing functions on the Internet. Data sent through the internet, such as a web page or email, is in the form of data packets. A packet is typically forwarded from one router to another router through the networks that constitute an internetwork until it reaches its destination node.
Frame Relay is a standardized wide area network (WAN) technology that specifies the physical and data link layers of digital telecommunications channels using a packet switching methodology. Originally designed for transport across Integrated Services Digital Network (ISDN) infrastructure, it may be used today in the context of many other network interfaces.
A virtual circuit (VC) is a means of transporting data over a packet-switched network in such a way that it appears as though there is a dedicated physical link between the source and destination end systems of this data. The term virtual circuit is synonymous with virtual connection.
Differentiated services or DiffServ is a computer networking architecture that specifies a simple and scalable mechanism for classifying and managing network traffic and providing quality of service (QoS) on modern IP networks. DiffServ can, for example, be used to provide low-latency to critical network traffic such as voice or streaming media while providing simple best-effort service to non-critical services such as web traffic or file transfers.
In computer networking, integrated services or IntServ is an architecture that specifies the elements to guarantee quality of service (QoS) on networks. IntServ can for example be used to allow video and sound to reach the receiver without interruption.
Traffic shaping is a bandwidth management technique used on computer networks which delays some or all datagrams to bring them into compliance with a desired traffic profile. Traffic shaping is used to optimize or guarantee performance, improve latency, or increase usable bandwidth for some kinds of packets by delaying other kinds. It is often confused with traffic policing, the distinct but related practice of packet dropping and packet marking.
Network congestion in data networking and queueing theory is the reduced quality of service that occurs when a network node or link is carrying more data than it can handle. Typical effects include queueing delay, packet loss or the blocking of new connections. A consequence of congestion is that an incremental increase in offered load leads either only to a small increase or even a decrease in network throughput.
The Resource Reservation Protocol (RSVP) is a transport layer protocol designed to reserve resources across a network using the integrated services model. RSVP operates over an IPv4 or IPv6 and provides receiver-initiated setup of resource reservations for multicast or unicast data flows. It does not transport application data but is similar to a control protocol, like Internet Control Message Protocol (ICMP) or Internet Group Management Protocol (IGMP). RSVP is described in RFC 2205.
In computer networking, per-hop behaviour (PHB) is a term used in differentiated services (DiffServ) or multiprotocol label switching (MPLS). It defines the policy and priority applied to a packet when traversing a hop in a DiffServ network.
An overlay network is a computer network that is layered on top of another network.
The type of service (ToS) field is the second byte of the IPv4 header. It has had various purposes over the years, and has been defined in different ways by five RFCs.
A computer network is a set of computers sharing resources located on or provided by network nodes. The computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies, based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.
Bandwidth management is the process of measuring and controlling the communications on a network link, to avoid filling the link to capacity or overfilling the link, which would result in network congestion and poor performance of the network. Bandwidth is described by bit rate and measured in units of bits per second (bit/s) or bytes per second (B/s).
In computing, Microsoft's Windows Vista and Windows Server 2008 introduced in 2007/2008 a new networking stack named Next Generation TCP/IP stack, to improve on the previous stack in several ways. The stack includes native implementation of IPv6, as well as a complete overhaul of IPv4. The new TCP/IP stack uses a new method to store configuration settings that enables more dynamic control and does not require a computer restart after a change in settings. The new stack, implemented as a dual-stack model, depends on a strong host-model and features an infrastructure to enable more modular components that one can dynamically insert and remove.
Label switching is a technique of network relaying to overcome the problems perceived by traditional IP-table switching. Here, the switching of network packets occurs at a lower level, namely the data link layer rather than the traditional network layer.
Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.
QoS Class Identifier (QCI) is a mechanism used in 3GPP Long Term Evolution (LTE) networks to ensure carrier traffic is allocated appropriate Quality of Service (QoS). Different carrier traffic requires different QoS and therefore different QCI values. QCI value 9 is typically used for the default carrier of a UE/PDN for non privileged subscribers.
Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.