Bass trap

Last updated


A typical bass trap Bass Trap.jpg
A typical bass trap

Bass traps are acoustic energy absorbers which are designed to damp low frequency sound energy with the goal of attaining a flatter low frequency (LF) room response by reducing LF resonances in rooms. They are commonly used in recording studios, mastering rooms, home theatres and other rooms built to provide a critical listening environment. Like all acoustically absorptive devices, they function by turning sound energy into heat through friction.

Contents

General description—types

There are generally two types of bass traps: resonant absorbers and porous absorbers. Resonant absorbers are further divided into panel absorbers and Helmholtz resonators. [1]

Both types are effective, but whereas a resonant absorber needs to be mechanically tuned to resonate in sympathy with the frequencies being absorbed, a porous absorber does not resonate and need not be tuned.

Porous absorbers tend to be smaller in size and are easier to design and build, as well as less expensive overall than resonant absorbers. However, the deep bass attenuation of a porous absorber is generally inferior, so its usefulness for attenuating lower frequency room resonances is more limited.

Resonating absorbers tend to absorb a narrower spectrum and porous absorbers tend to absorb a broader spectrum. The spectrum of both types can be either narrowed or broadened by design but the generalized difference in bandwidth and tunability dominates their respective performance.

Examples of resonating type bass traps include a rigid container with one or more portholes or slots (i.e. Helmholtz resonator), or a rigid container with a flexible diaphragm (i.e. membrane absorber). Resonating type bass trap achieves absorption of sound by sympathetic vibration of some free element of the device with the air volume of the room.

Resonating absorbers vary in construction, with one type of membrane absorber using a springy sheet of wood that attaches to the enclosure only along the edges/corners, and another using a more floppy sheet of thin material stretched like a drumhead. A Helmholtz resonator can have one port tuned to a single frequency, or several ports tuned to either a single or to multiple frequencies, with round port, slotted port, or even perforated construction. Resonating absorbers often incorporate porous absorption internally to simultaneously lower the resonant frequency and broaden the spectrum of absorption.

Porous absorbers are most commonly made from fiberglass, mineral wool or open cell foam that resists the passage of air molecules through the interstitial space. [2] Porous absorbers often incorporate a foil or paper facing to reflect frequencies above 500 Hz. Facing also improves low bass absorption by translating the physical compression of air at the facing into physical compression of the fibers that are in contact with the facing while also maintaining the resistive loss of air as it is driven through the bulk of the fiber by the facing.

Design concepts for building bass traps

Resonating bass traps

Resonating bass traps will absorb sound with high efficiency at their fundamental frequency of resonance. As such, a knowledge of the frequencies of resonances which require damping is helpful before designing and constructing a resonating bass trap. This can be attained by calculation of the room's modes or by direct measurement of the room itself.

Resonating absorbers can be broadened in the frequency range of efficacy to some degree by either introducing porous absorptive material to the interior of the vessel, by constraining the vibrations of the panel or membrane, or by installing an array of resonating devices each tuned to adjacent frequency ranges so that collectively the array functions over a broadened range of sounds. Such devices can be enormously effective over their tuned range, but can take up a great deal of space, especially when installed in arrays, and thus are sometimes not a practical solution.

Panel absorber

A simple panel resonator can be built to hang on a wall by building a wooden frame, adding several inches of mineral wool to the inside, and fitting a sheet of plywood over the top attached only at the edges. A small gap should be left between the panel and the acoustic insulation so that the panel is free to resonate. Panel resonance can be enhanced by reducing the point of connection between the panel and the frame by means of narrow spacer material such as a loop of wire or welding rod run along the edge of the frame so that the panel is perched on a thin edge. Approximate full sheet [4' × 8'] plywood panel resonances when mounted on a 1×4 frame 3.5" deep are:

  • 1/8" plywood = 150 Hz
  • 1/4" plywood = 110 Hz
  • 3/8" plywood = 87 Hz

Helmholtz resonator

Other common resonating bass traps are forms of the Helmholtz resonator—such as either a stiff walled box with a hole in one side [a port], or a series of slats over-mounted across the face as a stiff-walled box forming narrow openings in the cracks between the slat members.

Porous absorber bass traps

A bass trap generally comprises a core absorbent damp material, a frame, and a covering for aesthetic reasons.

Positioning

Since low frequency resonances in a room have their points of maximum or minimum pressure in the corners of the room, resonant bass traps mounted in these positions will be the most efficient, [3] while porous traps are most efficient at the points of high particle velocity such as 1/4 the desired wavelength away from the wall. [4] Bass traps are typically used to attenuate modal resonances and so exact placement depends on which room mode one is trying to target. Bass traps typically combine structural mechanisms that can work at both positions of high particle velocity/low pressure (thick fiberglass) and high pressure/low particle velocity (membranes).

Porous bass trap absorbers need to be very thick to be effective at lower frequencies so they tend to be allocated either as diagonal wedges in the corners or as thick rectangular bulk behind false walls where they are out of the way and less likely to disrupt higher frequencies or room function. Air gap behind a porous panel absorber e.g. straddling a corner also helps to ensure it protrudes more into the room where there is more air velocity, improving its velocity-based absorption and extending its bandwidth while inducing some ripple in its absorption spectrum. Resonant bass trap absorbers need to be at a pressure maximum and tend to be thinner, so they are more conveniently and effectively positioned flat against a wall in a corner where the pressure is maximum, rather than straddling a corner where there is more velocity.

Standard practice is to investigate the applicability of porous bass trap absorbers before investigating resonant or hybridized bass trap absorbers. Complementary methods to use in combination with porous absorption include drywall/stud construction of walls/ceiling and filled with insulation as a form of highly damped resonant bass trapping using the drywall itself as the membrane. The combination of inherently lossy resonant room boundaries and paper or foil faced porous bass trap absorption deep in the tricorners (where three room boundaries meet) is often sufficient to attain acceptable bass response even in listening rooms with somewhat problematic resonances.

Adjusting the listening position within the room boundaries and elevating the seating with a riser that is filled with porous absorption is one more method that can improve bass response without resorting to resonant bass trapping, while simultaneously improving home theater screen visibility.

Small listening rooms suffer a paucity of low frequency resonances with gaps between them, so another complementary method is adding a subwoofer to drive the room resonances from an optimal physical location that minimizes ripple in the frequency response at the listening position. Yet another complementary method is splitting an existing subwoofer allocation up into multiple smaller subwoofers in spatially separated locations that increase the degrees of freedom available to tune the response with. Multiple subwoofers also tend to smooth the bass response across a larger listening area and are often easier to place for good bass response than a single larger subwoofer (or no subwoofer).

If the response is somewhat uniform across all listening positions using these methods, equalization can be used to shape the bass response to the desired target and further smooth out any remaining ripple.

Some combination of porous absorption with these complementary methods is typically preferred for their simplicity, affordability, and convenience, but resonant bass traps are more effective for absorbing strong room resonances where the aforementioned complementary methods are inadequate or impractical, particularly when the geometry of the room causes problematic narrow-band resonances that affect the low bass and the composition of the room boundaries is highly reflective rather than acoustically lossy.

Further reading

Related Research Articles

Resonance Tendency to oscillate at certain frequencies

Resonance describes the phenomenon of increased amplitude that occurs when the frequency of a periodically applied force is equal or close to a natural frequency of the system on which it acts. When an oscillating force is applied at a resonant frequency of a dynamical system, the system will oscillate at a higher amplitude than when the same force is applied at other, non-resonant frequencies.

Loudspeaker Electroacoustic transducer that converts an electrical audio signal into a corresponding sound

A loudspeaker is an electroacoustic transducer; a device which converts an electrical audio signal into a corresponding sound. The most widely used type of speaker is the dynamic speaker. The sound source must be amplified or strengthened with an audio power amplifier before the signal is sent to the speaker.

<i>Q</i> factor Parameter describing the longevity of energy in a resonator relative to its resonant frequency

In physics and engineering the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is approximately defined as the ratio of the initial energy stored in the resonator to the energy lost in one radian of the cycle of oscillation. Q factor is alternatively defined as the ratio of a resonator's centre frequency to its bandwidth when subject to an oscillating driving force. These two definitions give numerically similar, but not identical, results. Higher Q indicates a lower rate of energy loss and the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.

Room acoustics describes how sound behaves in an enclosed space.

Soundproofing Means of reducing the sound pressure with respect to a specified sound source and receptor

Soundproofing is any means of reducing the sound pressure with respect to a specified sound source and receptor. There are several basic approaches to reducing sound: increasing the distance between source and receiver, using noise barriers to reflect or absorb the energy of the sound waves, using damping structures such as sound baffles, or using active antinoise sound generators.

Resonator Device or system that exhibits resonance

A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical. Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use acoustic resonators that produce sound waves of specific tones. Another example is quartz crystals used in electronic devices such as radio transmitters and quartz watches to produce oscillations of very precise frequency.

Bass reflex

A bass reflex system is a type of loudspeaker enclosure that uses a port (hole) or vent cut into the cabinet and a section of tubing or pipe affixed to the port. This port enables the sound from the rear side of the diaphragm to increase the efficiency of the system at low frequencies as compared to a typical sealed- or closed-box loudspeaker or an infinite baffle mounting.

Helmholtz resonance Phenomenon of air resonance in a cavity

Helmholtz resonance or wind throb is the phenomenon of air resonance in a cavity, such as when one blows across the top of an empty bottle. The name comes from a device created in the 1850s by Hermann von Helmholtz, the Helmholtz resonator, which he used to identify the various frequencies or musical pitches present in music and other complex sounds.

Acoustic resonance resonance phenomena in sound and musical devices

Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration.

Acoustic foam is an open celled foam used for acoustic treatment. It attenuates airbone sound waves, reducing their amplitude, for the purposes of noise reduction or noise control. The energy is dissipated as heat. Acoustic foam can be made in several different colors, sizes and thickness.

Loudspeaker enclosure Acoustical component

A loudspeaker enclosure or loudspeaker cabinet is an enclosure in which speaker drivers and associated electronic hardware, such as crossover circuits and, in some cases, power amplifiers, are mounted. Enclosures may range in design from simple, homemade DIY rectangular particleboard boxes to very complex, expensive computer-designed hi-fi cabinets that incorporate composite materials, internal baffles, horns, bass reflex ports and acoustic insulation. Loudspeaker enclosures range in size from small "bookshelf" speaker cabinets with 4" woofers and small tweeters designed for listening to music with a hi-fi system in a private home to huge, heavy subwoofer enclosures with multiple 18" or even 21" speakers in huge enclosures which are designed for use in stadium concert sound reinforcement systems for rock music concerts.

Room modes are the collection of resonances that exist in a room when the room is excited by an acoustic source such as a loudspeaker. Most rooms have their fundamental resonances in the 20 Hz to 200 Hz region, each frequency being related to one or more of the room's dimensions or a divisor thereof. These resonances affect the low-frequency low-mid-frequency response of a sound system in the room and are one of the biggest obstacles to accurate sound reproduction.

Passive radiator (speaker)

A speaker enclosure using a passive radiator (PR) usually contains an "active loudspeaker", and a passive radiator. The active loudspeaker is a normal driver, and the passive radiator is of similar construction, but without a voice coil and magnet assembly. It is not attached to a voice coil or wired to an electrical circuit or power amplifier.

Acoustic guitar

An acoustic guitar is a musical instrument in the guitar family. Its strings vibrate a sound board on a resonant body to project a sound wave through the air. The original, general term for this stringed instrument is guitar, and the retronym 'acoustic guitar' distinguishes it from an electric guitar, which relies on electronic amplification. Typically, a guitar's body is a sound box, of which the top side serves as a sound board that enhances the vibration sounds of the strings. In standard tuning the guitar's six strings are tuned (low to high) E2 A2 D3 G3 B3 E4.

Acoustic transmission line

An acoustic transmission line is the use of a long duct, which acts as an acoustic waveguide and is used to produce or transmit sound in an undistorted manner. Technically it is the acoustic analog of the electrical transmission line, typically conceived as a rigid-walled duct or tube, that is long and thin relative to the wavelength of sound present in it.

Acoustic quieting is the process of making machinery quieter by damping vibrations to prevent them from reaching the observer. Machinery vibrates, causing sound waves in air, hydroacoustic waves in water, and mechanical stresses in solid matter. Quieting is achieved by absorbing the vibrational energy or minimizing the source of the vibration. It may also be redirected away from the observer.

Jamestown C. McKinney, a renowned vocal pedagogue and longtime professor of voice at Southwestern Baptist Theological Seminary's school of church music, defines vocal resonance as "the process by which the basic product of phonation is enhanced in timbre and/or intensity by the air-filled cavities through which it passes on its way to the outside air." Throughout the vocal literature, various terms related to resonation are used, including: amplification, filtering, enrichment, enlargement, improvement, intensification, and prolongation. Acoustic authorities would question many of these terms from a strictly scientific perspective. However, the main point to be drawn from these terms by a singer or speaker is that the result of resonation is to make a "better" sound, or at least suitable to a certain esthetical and practical domain.

Acoustic metamaterial

An acoustic metamaterial, sonic crystal, or phononic crystal, is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids. Sound wave control is accomplished through manipulating parameters such as the bulk modulus β, density ρ, and chirality. They can be engineered to either transmit, or trap and amplify sound waves at certain frequencies. In the latter case, the material is an acoustic resonator.

Vessel flute Vessel-shaped flute

A vessel flute is a type of flute with a body which acts as a Helmholtz resonator. The body is vessel-shaped, not tube- or cone-shaped.

A transmission line loudspeaker is a loudspeaker enclosure design which uses the topology of an acoustic transmission line within the cabinet, compared to the simpler enclosures used by sealed (closed) or ported designs. Instead of reverberating in a fairly simple damped enclosure, sound from the back of the bass speaker is directed into a long damped pathway within the speaker enclosure, which allows far greater control and use of speaker energy and the resulting sound.

References