Bell's spaceship paradox is a thought experiment in special relativity. It was first described by E. Dewan and M. Beran in 1959 [1] but became more widely known after John Stewart Bell elaborated the idea further in 1976. [2] A delicate thread hangs between two spaceships headed in the same direction. They start accelerating simultaneously and equally as measured in the inertial frame S, thus having the same velocity at all times as viewed from S. Therefore, they are all subject to the same Lorentz contraction, so the entire assembly seems to be equally contracted in the S frame with respect to the length at the start. At first sight, it might appear that the thread will not break during acceleration.
This argument, however, is incorrect as shown by Dewan and Beran, and later Bell. [1] [2] The distance between the spaceships does not undergo Lorentz contraction with respect to the distance at the start, because in S, it is effectively defined to remain the same, due to the equal and simultaneous acceleration of both spaceships in S. It also turns out that the rest length between the two has increased in the frames in which they are momentarily at rest (S′), because the accelerations of the spaceships are not simultaneous here due to relativity of simultaneity. The thread, on the other hand, being a physical object held together by electrostatic forces, maintains the same rest length. Thus, in frame S, it must be Lorentz contracted, which result can also be derived when the electromagnetic fields of bodies in motion are considered. So, calculations made in both frames show that the thread will break; in S′ due to the non-simultaneous acceleration and the increasing distance between the spaceships, and in S due to length contraction of the thread.
In the following, the rest length [3] or proper length [4] of an object is its length measured in the object's rest frame. (This length corresponds to the proper distance between two events in the special case, when these events are measured simultaneously at the endpoints in the object's rest frame. [4] )
Dewan and Beran stated the thought experiment by writing:
Then this setup is repeated again, but this time the back of the first rocket is connected with the front of the second rocket by a silk thread. They concluded:
Dewan and Beran also discussed the result from the viewpoint of inertial frames momentarily comoving with the first rocket, by applying a Lorentz transformation:
They concluded:
Then they discussed the objection, that there should be no difference between a) the distance between two ends of a connected rod, and b) the distance between two unconnected objects which move with the same velocity with respect to an inertial frame. Dewan and Beran removed those objections by arguing:
In Bell's version of the thought experiment, three spaceships A, B and C are initially at rest in a common inertial reference frame, B and C being equidistant to A. Then, a signal is sent from A to reach B and C simultaneously, causing B and C starting to accelerate in the vertical direction (having been pre-programmed with identical acceleration profiles), while A stays at rest in its original reference frame. According to Bell, this implies that B and C (as seen in A's rest frame) "will have at every moment the same velocity, and so remain displaced one from the other by a fixed distance." Now, if a fragile thread is tied between B and C, it's not long enough anymore due to length contractions, thus it will break. He concluded that "the artificial prevention of the natural contraction imposes intolerable stress". [2]
Bell reported that he encountered much skepticism from "a distinguished experimentalist" when he presented the paradox. To attempt to resolve the dispute, an informal and non-systematic survey of opinion at CERN was held. According to Bell, there was "clear consensus" which asserted, incorrectly, that the string would not break. Bell goes on to add,
In general, it was concluded by Dewan & Beran and Bell, that relativistic stresses arise when all parts of an object are accelerated the same way with respect to an inertial frame, and that length contraction has real physical consequences. For instance, Bell argued that the length contraction of objects as well as the lack of length contraction between objects in frame S can be explained using relativistic electromagnetism. The distorted electromagnetic intermolecular fields cause moving objects to contract, or to become stressed if hindered from doing so. In contrast, no such forces act on the space between objects. [2] (Generally, Richard Feynman demonstrated how the Lorentz transformation can be derived from the case of the potential of a charge moving with constant velocity (as represented by the Liénard–Wiechert potential). As to the historical aspect, Feynman alluded to the circumstance that Hendrik Lorentz arrived essentially the same way at the Lorentz transformation, [5] see also History of Lorentz transformations.)
However, Petkov (2009) [6] and Franklin (2009) [3] interpret this paradox differently. They agreed with the result that the string will break due to unequal accelerations in the rocket frames, which causes the rest length between them to increase (see the Minkowski diagram in the analysis section). However, they denied the idea that those stresses are caused by length contraction in S. This is because, in their opinion, length contraction has no "physical reality", but is merely the result of a Lorentz transformation, i.e. a rotation in four-dimensional space which by itself can never cause any stress at all. Thus the occurrence of such stresses in all reference frames including S and the breaking of the string is supposed to be the effect of relativistic acceleration alone. [3] [6]
Paul Nawrocki (1962) gives three arguments why the string should not break, [7] while Edmond Dewan (1963) showed in a reply that his original analysis still remains valid. [8] Many years later and after Bell's book, Matsuda and Kinoshita reported receiving much criticism after publishing an article on their independently rediscovered version of the paradox in a Japanese journal. Matsuda and Kinoshita do not cite specific papers, however, stating only that these objections were written in Japanese. [9]
However, in most publications it is agreed that the string will break, with some reformulations, modifications and different scenarios, such as by Evett & Wangsness (1960), [10] Dewan (1963), [8] Romain (1963), [11] Evett (1972), [12] Gershtein & Logunov (1998), [13] Tartaglia & Ruggiero (2003), [14] Cornwell (2005), [15] Flores (2005), [16] Semay (2006), [17] Styer (2007), [18] Freund (2008), [19] Redzic (2008), [20] Peregoudov (2009), [21] Redžić (2009), [22] Gu (2009), [23] Petkov (2009), [6] Franklin (2009), [3] Miller (2010), [24] Fernflores (2011), [25] Kassner (2012), [26] Natario (2014), [27] Lewis, Barnes & Sticka (2018), [28] Bokor (2018). [29] A similar problem was also discussed in relation to angular accelerations: Grøn (1979), [30] MacGregor (1981), [31] Grøn (1982, 2003). [32] [33]
Similarly, in the case of Bell's spaceship paradox the relation between the initial rest length between the ships (identical to the moving length in S after acceleration) and the new rest length in S′ after acceleration, is: [3] [6] [8] [16]
This length increase can be calculated in different ways. For instance, if the acceleration is finished the ships will constantly remain at the same location in the final rest frame S′, so it's only necessary to compute the distance between the x-coordinates transformed from S to S′. If and are the ships' positions in S, the positions in their new rest frame S′ are: [3]
Another method was shown by Dewan (1963) who demonstrated the importance of relativity of simultaneity. [8] The perspective of frame S′ is described, in which both ships will be at rest after the acceleration is finished. The ships are accelerating simultaneously at in S (assuming acceleration in infinitesimal small time), though B is accelerating and stopping in S′ before A due to relativity of simultaneity, with the time difference:
Since the ships are moving with the same velocity in S′ before acceleration, the initial rest length in S is shortened in S′ by due to length contraction. From the frame of S′, B starts accelerating before A and also stops accelerating before A. Due to this B will always have higher velocity than A up until the moment A is finished accelerating too, and both of them are at rest with respect to S′. The distance between B and A keeps on increasing till A stops accelerating. Although A's acceleration timeline is delayed by an offset of , both A and B cover the same distance in their respective accelerations. But B's timeline contains acceleration and also being at rest in S` for till A stops accelerating. Hence the extra distance covered by B during the entire course can be calculated by measuring the distance traveled by B during this phase. Dewan arrived at the relation (in different notation): [8]
It was also noted by several authors that the constant length in S and the increased length in S′ is consistent with the length contraction formula , because the initial rest length is increased by in S′, which is contracted in S by the same factor, so it stays the same in S: [6] [14] [18]
Summarizing: While the rest distance between the ships increases to in S′, the relativity principle requires that the string (whose physical constitution is unaltered) maintains its rest length in its new rest system S′. Therefore, it breaks in S′ due to the increasing distance between the ships. As explained above, the same is also obtained by only considering the start frame S using length contraction of the string (or the contraction of its moving molecular fields) while the distance between the ships stays the same due to equal acceleration.
Instead of instantaneous changes of direction, special relativity also allows to describe the more realistic scenario of constant proper acceleration, i.e. the acceleration indicated by a comoving accelerometer. This leads to hyperbolic motion, in which the observer continuously changes momentary inertial frames [34]
where is the coordinate time in the external inertial frame, and the proper time in the momentary frame, and the momentary velocity is given by
The mathematical treatment of this paradox is similar to the treatment of Born rigid motion. However, rather than ask about the separation of spaceships with the same acceleration in an inertial frame, the problem of Born rigid motion asks, "What acceleration profile is required by the second spaceship so that the distance between the spaceships remains constant in their proper frame?" [35] [34] [36] In order for the two spaceships, initially at rest in an inertial frame, to maintain a constant proper distance, the lead spaceship must have a lower proper acceleration. [3] [36] [37]
This Born rigid frame can be described by using Rindler coordinates (Kottler-Møller coordinates) [34] [38]
The condition of Born rigidity requires that the proper acceleration of the spaceships differs by [38]
and the length measured in the Rindler frame (or momentary inertial frame) by one of the observers is Lorentz contracted to in the external inertial frame by [38]
which is the same result as above. Consequently, in the case of Born rigidity, the constancy of length L' in the momentary frame implies that L in the external frame decreases constantly, the thread doesn't break. However, in the case of Bell's spaceship paradox the condition of Born rigidity is broken, because the constancy of length L in the external frame implies that L' in the momentary frame increases, the thread breaks (in addition, the expression for the distance increase between two observers having the same proper acceleration becomes also more complicated in the momentary frame [17] ).
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is based on two postulates:
In physics, spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into a single four dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur.
In the special theory of relativity, four-force is a four-vector that replaces the classical force.
The Kennedy–Thorndike experiment, first conducted in 1932 by Roy J. Kennedy and Edward M. Thorndike, is a modified form of the Michelson–Morley experimental procedure, testing special relativity. The modification is to make one arm of the classical Michelson–Morley (MM) apparatus shorter than the other one. While the Michelson–Morley experiment showed that the speed of light is independent of the orientation of the apparatus, the Kennedy–Thorndike experiment showed that it is also independent of the velocity of the apparatus in different inertial frames. It also served as a test to indirectly verify time dilation – while the negative result of the Michelson–Morley experiment can be explained by length contraction alone, the negative result of the Kennedy–Thorndike experiment requires time dilation in addition to length contraction to explain why no phase shifts will be detected while the Earth moves around the Sun. The first direct confirmation of time dilation was achieved by the Ives–Stilwell experiment. Combining the results of those three experiments, the complete Lorentz transformation can be derived.
The Trouton–Noble experiment was an attempt to detect motion of the Earth through the luminiferous aether, and was conducted in 1901–1903 by Frederick Thomas Trouton and H. R. Noble. It was based on a suggestion by George FitzGerald that a charged parallel-plate capacitor moving through the aether should orient itself perpendicular to the motion. Like the earlier Michelson–Morley experiment, Trouton and Noble obtained a null result: no motion relative to the aether could be detected. This null result was reproduced, with increasing sensitivity, by Rudolf Tomaschek, Chase and Hayden in 1994. Such experimental results are now seen, consistent with special relativity, to reflect the validity of the principle of relativity and the absence of any absolute rest frame. The experiment is a test of special relativity.
Time dilation is the difference in elapsed time as measured by two clocks, either due to a relative velocity between them or due to a difference in gravitational potential between their locations. When unspecified, "time dilation" usually refers to the effect due to velocity.
Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. It is also known as Lorentz contraction or Lorentz–FitzGerald contraction and is usually only noticeable at a substantial fraction of the speed of light. Length contraction is only in the direction in which the body is travelling. For standard objects, this effect is negligible at everyday speeds, and can be ignored for all regular purposes, only becoming significant as the object approaches the speed of light relative to the observer.
Proper length or rest length is the length of an object in the object's rest frame.
The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations. The name originates from its earlier appearance in Lorentzian electrodynamics – named after the Dutch physicist Hendrik Lorentz.
Rindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame. The phenomena in this hyperbolically accelerated frame can be compared to effects arising in a homogeneous gravitational field. For general overview of accelerations in flat spacetime, see Acceleration and Proper reference frame.
Hyperbolic motion is the motion of an object with constant proper acceleration in special relativity. It is called hyperbolic motion because the equation describing the path of the object through spacetime is a hyperbola, as can be seen when graphed on a Minkowski diagram whose coordinates represent a suitable inertial (non-accelerated) frame. This motion has several interesting features, among them that it is possible to outrun a photon if given a sufficient head start, as may be concluded from the diagram.
In relativistic physics, Supplee's paradox is a physical paradox that arises when considering the buoyant force exerted on a relativistic bullet immersed in a fluid subject to an ambient gravitational field. If a bullet has neutral buoyancy when it is at rest in a perfect fluid and then it is launched with a relativistic speed, observers at rest within the fluid would conclude that the bullet should sink, since its density will increase due to the length contraction effect. On the other hand, in the bullet's proper frame it is the moving fluid that becomes denser and hence the bullet would float. But the bullet cannot sink in one frame and float in another, so there is a paradox situation.
In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of the orbital motion.
The Ehrenfest paradox concerns the rotation of a "rigid" disc in the theory of relativity.
A spacetime diagram is a graphical illustration of objects' locations in space at various times, especially in the special theory of relativity. Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.
In relativity, proper velocityw of an object relative to an observer is the ratio between observer-measured displacement vector and proper time τ elapsed on the clocks of the traveling object:
The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.
Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.
A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.
Note that the proper distance between two events is generally not the same as the proper length of an object whose end points happen to be respectively coincident with these events. Consider a solid rod of constant proper length l(0). If you are in the rest frame K0 of the rod, and you want to measure its length, you can do it by first marking its end-points. And it is not necessary that you mark them simultaneously in K0. You can mark one end now (at a moment t1) and the other end later (at a moment t2) in K0, and then quietly measure the distance between the marks. We can even consider such measurement as a possible operational definition of proper length. From the viewpoint of the experimental physics, the requirement that the marks be made simultaneously is redundant for a stationary object with constant shape and size, and can in this case be dropped from such definition. Since the rod is stationary in K0, the distance between the marks is the proper length of the rod regardless of the time lapse between the two markings. On the other hand, it is not the proper distance between the marking events if the marks are not made simultaneously in K0.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)