Berkeley cardinal

Last updated

In set theory, Berkeley cardinals are certain large cardinals suggested by Hugh Woodin in a seminar at the University of California, Berkeley in about 1992.

Contents

A Berkeley cardinal is a cardinal κ in a model of Zermelo–Fraenkel set theory with the property that for every transitive set M that includes κ and α < κ, there is a nontrivial elementary embedding of M into M with α < critical point < κ. [1] Berkeley cardinals are a strictly stronger cardinal axiom than Reinhardt cardinals, implying that they are not compatible with the axiom of choice.

A weakening of being a Berkeley cardinal is that for every binary relation R on Vκ, there is a nontrivial elementary embedding of (Vκ, R) into itself. This implies that we have elementary

j1, j2, j3, ...
j1: (Vκ, ∈) → (Vκ, ∈),
j2: (Vκ, ∈, j1) → (Vκ, ∈, j1),
j3: (Vκ, ∈, j1, j2) → (Vκ, ∈, j1, j2),

and so on. This can be continued any finite number of times, and to the extent that the model has dependent choice, transfinitely. Thus, plausibly, this notion can be strengthened simply by asserting more dependent choice.

While all these notions are incompatible with Zermelo–Fraenkel set theory (ZFC), their consequences do not appear to be false. There is no known inconsistency with ZFC in asserting that, for example:
For every ordinal λ, there is a transitive model of ZF + Berkeley cardinal that is closed under λ sequences.

See also

Related Research Articles

<span class="mw-page-title-main">Axiom of choice</span> Axiom of set theory

In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem.

In mathematics, specifically set theory, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states that

there is no set whose cardinality is strictly between that of the integers and the real numbers,

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal κ is strongly inaccessible if it is uncountable, it is not a sum of fewer than κ cardinals smaller than κ, and implies .

In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, and all singletons {α}, ακ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large.

In mathematics, a cardinal number κ is called huge if there exists an elementary embedding j : VM from V into a transitive inner model M with critical point κ and

In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by Erdős & Tarski (1961); weakly compact cardinals are large cardinals, meaning that their existence cannot be proven from the standard axioms of set theory.

<span class="mw-page-title-main">Aleph number</span> Infinite cardinal number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Semitic letter aleph.

In set theory, a branch of mathematics, a rank-into-rank embedding is a large cardinal property defined by one of the following four axioms given in order of increasing consistency strength.

In mathematics, in set theory, the constructible universe, denoted by L, is a particular class of sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchyLα. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.

In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular.

In set theory and related branches of mathematics, the von Neumann universe, or von Neumann hierarchy of sets, denoted by V, is the class of hereditary well-founded sets. This collection, which is formalized by Zermelo–Fraenkel set theory (ZFC), is often used to provide an interpretation or motivation of the axioms of ZFC. The concept is named after John von Neumann, although it was first published by Ernst Zermelo in 1930.

The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written as V = L, where V and L denote the von Neumann universe and the constructible universe, respectively. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms. Generalizations of this axiom are explored in inner model theory.

In mathematics, a Grothendieck universe is a set U with the following properties:

  1. If x is an element of U and if y is an element of x, then y is also an element of U. (U is a transitive set.)
  2. If x and y are both elements of U, then is an element of U.
  3. If x is an element of U, then P(x), the power set of x, is also an element of U.
  4. If is a family of elements of U, and if I is an element of U, then the union is an element of U.

In set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that, with respect to any given property, resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory.

In mathematics, Vopěnka's principle is a large cardinal axiom. The intuition behind the axiom is that the set-theoretical universe is so large that in every proper class, some members are similar to others, with this similarity formalized through elementary embeddings.

In set theory, a branch of mathematics, a Reinhardt cardinal is a kind of large cardinal. Reinhardt cardinals are considered under ZF, because they are inconsistent with ZFC. They were suggested by American mathematician William Nelson Reinhardt (1939–1998).

<span class="mw-page-title-main">Axiom of limitation of size</span>

In set theory, the axiom of limitation of size was proposed by John von Neumann in his 1925 axiom system for sets and classes. It formalizes the limitation of size principle, which avoids the paradoxes encountered in earlier formulations of set theory by recognizing that some classes are too big to be sets. Von Neumann realized that the paradoxes are caused by permitting these big classes to be members of a class. A class that is a member of a class is a set; a class that is not a set is a proper class. Every class is a subclass of V, the class of all sets. The axiom of limitation of size says that a class is a set if and only if it is smaller than V—that is, there is no function mapping it onto V. Usually, this axiom is stated in the equivalent form: A class is a proper class if and only if there is a function that maps it onto V.

This is a glossary of set theory.

In mathematical set theory, a worldly cardinal is a cardinal κ such that the rank Vκ is a model of Zermelo–Fraenkel set theory.

References

  1. "Berkeley - Cantor's Attic". neugierde.github.io. Retrieved 2023-04-15.

Sources