Bernard Dieny

Last updated
Bernard Dieny
EducationAgrégation de physique
Doctorate in Physics
Habilitation à diriger des Recherches
Alma mater Ecole Normale Supérieure de Cachan
University Joseph Fourier, Grenoble
Occupation(s)Research scientist and entrepreneur
Awards IBM Outstanding achievement award for development of spin-valves
Applied Physics Award, the French Society of Physics
Award of innovative idea and innovative technology from CEA
Adrien Constantin de Magny Prize from Académie des Sciences
Achievement Award, IEEE Magnetics Society
Academic career
Institutions CNRS/Lab Louis Néel, CEA/IRIG/SPINTEC

Bernard Dieny is a research scientist and an entrepreneur. He is Chief Scientist at SPINTEC (Spintronics and Technology of Components), a CEA/CNRS/UGA research laboratory that he co-founded in 2002 in Grenoble, France. He is also co-founder of two startup companies: Crocus Technology on MRAM and magnetic sensors in 2006 and EVADERIS on circuits design in 2014. [1]

Contents

Dieny has published over 480 papers and has 77 patents awarded. [2] His main research interests center around magnetism and spin electronics, including spintronics phenomena, spintronic materials and applications, particularly memory (MRAM) devices, interfacial magnetism, perpendicular magnetic anisotropy, hybrid CMOS/magnetic technology, magnetic recording technology and magnetic biotechnologies. He received two advanced research grants from the European Research Council (ERC) focused on the design, fabrication and evaluation of ultra-low power and multifunctional spintronic circuits particularly suitable for the Internet of Things. [3]

Dieny is a Fellow of IEEE Magnetics Society. He founded the French Chapter of the society in 2006. [4]

Education

Dieny received "Agrégation de physique" from Ecole Normale Supérieure de Cachan in 1982. He then enrolled at the University Joseph Fourier, and earned his Doctorate in Physics in 1985, and completed his Habilitation à diriger des Recherches in 2005. [5]

Career

Dieny started his career as a Permanent junior Researcher at CNRS/ Laboratoire de magnétisme Louis Néel in 1988. He was then hired at CEA/Grenoble as Permanent Researcher in 1992. He became head of "Nanostructures and Magnetism" laboratory from 1996 till 2001. In 2002, he cofounded SPINtronics and TEchnology of Components (SPINTEC) of which he has been Deputy Head till 2015. He also served as Senior expert and Research Director at CEA. He is currently SPINTEC Chief Scientist. [1]

Research

Dieny has focused his research on magnetism and spin electronics, and has received two Advanced Research grants from the European Research Council in 2009 and 2014 related to hybrid CMOS/Magnetic Integrated Electronics. For his research in the field, he was also awarded the De Magny Prize from French Academy of Sciences in 2015 and the IEEE Magnetics Society Achievement Award in 2019. [6]

Magnetic recording technology

In his studies focused on the potential of Giant Magnetoresistance (GMR) for read-heads, Dieny demonstrated that sandwiches comprising two uncoupled ferromagnetic layers, one of pinned magnetization, the other of free magnetization, could exhibit the GMR sensitivity required for read-head applications. He along with his team coined the name spin-valves to these systems. [7] He is the co-inventor of the first seven patents related to spin-valves, for which he was awarded an outstanding achievement award from IBM for this work in 1992, and was interviewed in relation to this work at the Computer History Museum in Mountain View in 2018. [8] Dieny also developed a modeling tool based on Fuchs Sondheimer theory allowing the calculation of the resistance and GMR of any spin-valve structures from the microscopic transport parameters. [9] This tool has been widely used in the recording industry to speed-up the optimization of spin-valve read-heads.

Spinelectronics

Dieny has pioneered several very important fields in spintronics. In 1995, he participated to the worldwide first realization of spin-electronic devices combining semiconductor and magnetic layers: the spin-valve transistor. [10] This work carried out in collaboration with Twente University, had a very strong impact and stimulated lot of subsequent studies in the field of Ballistic Electron Emission Microscopy (BEEM). He has also filed about 60 patents related to MRAM, some being key since they are now used by all microelectronic companies producing MRAM. In 2002, his team discovered the phenomenon of perpendicular anisotropy at magnetic metal/oxide interfaces. [11] [12] Moreover, he also launched an important activity on nonvolatile logic combining CMOS (CMOS: Complementary Metal Oxide Semiconductor technology) and magnetic technologies. His team also developed the design tools from individual cells level to system level required to conceive spintronic circuits. [13] Along this line, they designed and successfully tested MRAM blocks, FPGA circuits, and microcontrollers. [14]

In 2015, he proposed a novel approach for the nanopatterning of MRAM cells at high density and narrow pitch opening the route towards multi-gigabit MRAM chips. His team also proposed and demonstrated a novel concept of MRAM utilizing a perpendicular shape anisotropy of the storage layer to increase the memory retention at advanced technology nodes (sub 20 nm). [15]

Magnetism and Microelectronics Communities

Dieny has worked to strengthen the relationships between magnetism and microelectronics communities. [16] In 2013, he launched an annual Introductory Course on Magnetic Random Access Memory “InMRAM”. Along the same line, with the strong support of Samsung Electronics, he organizes every year a MRAM Global Innovation Forum at IEDM, the main annual conference of microelectronics sponsored by the IEEE Electron Devices Society. [17]

Magnetism and biotechnology

In 2012, Dieny launched a new activity at SPINTEC related to the use of magnetic nanoparticles in biotechnology and biomedicine. In collaboration with other labs at CEA/DRF/IRIG and a team at INSERM, his team demonstrated in-vitro, the possibility to trigger the apoptosis (spontaneous death) of cancer cells as well as to stimulate the production of insulin by pancreatic cells thanks to the low frequency (~20 Hz) mechanical vibrations of magnetic particles in contact with the cells. [18] These studies are now pursued in-vivo in collaboration with INSERM and CHU Grenoble.

Awards/honors

Bibliography

Related Research Articles

Spintronics, also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.

Magnetoresistive random-access memory (MRAM) is a type of non-volatile random-access memory which stores data in magnetic domains. Developed in the mid-1980s, proponents have argued that magnetoresistive RAM will eventually surpass competing technologies to become a dominant or even universal memory. Currently, memory technologies in use such as flash RAM and DRAM have practical advantages that have so far kept MRAM in a niche role in the market.

<span class="mw-page-title-main">Tunnel magnetoresistance</span> Magnetic effect in insulators between ferromagnets

Tunnel magnetoresistance (TMR) is a magnetoresistive effect that occurs in a magnetic tunnel junction (MTJ), which is a component consisting of two ferromagnets separated by a thin insulator. If the insulating layer is thin enough, electrons can tunnel from one ferromagnet into the other. Since this process is forbidden in classical physics, the tunnel magnetoresistance is a strictly quantum mechanical phenomenon, and lies in the study of spintronics.

<span class="mw-page-title-main">Giant magnetoresistance</span> Phenomenom involving the change of conductivity in metallic layers

Giant magnetoresistance (GMR) is a quantum mechanical magnetoresistance effect observed in multilayers composed of alternating ferromagnetic and non-magnetic conductive layers. The 2007 Nobel Prize in Physics was awarded to Albert Fert and Peter Grünberg for the discovery of GMR, which also sets the foundation for the study of spintronics.

<span class="mw-page-title-main">Albert Fert</span> French physicist (born 1938)

Albert Fert is a French physicist and one of the discoverers of giant magnetoresistance which brought about a breakthrough in gigabyte hard disks. Currently, he is an emeritus professor at Paris-Saclay University in Orsay, scientific director of a joint laboratory between the Centre national de la recherche scientifique and Thales Group, and adjunct professor at Michigan State University. He was awarded the 2007 Nobel Prize in Physics together with Peter Grünberg.

Burkard Hillebrands is a German physicist and professor of physics. He is the leader of the magnetism research group in the Department of Physics at the Technische Universität Kaiserslautern.

Exchange bias or exchange anisotropy occurs in bilayers of magnetic materials where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the soft magnetization curve of a ferromagnetic film. The exchange bias phenomenon is of tremendous utility in magnetic recording, where it is used to pin the state of the readback heads of hard disk drives at exactly their point of maximum sensitivity; hence the term "bias."

<span class="mw-page-title-main">Stuart Parkin</span> British physicist

Stuart Stephen Papworth Parkin is an experimental physicist, Managing Director at the Max Planck Institute of Microstructure Physics in Halle and an Alexander von Humboldt Professor at the Institute of Physics of the Martin-Luther-University Halle-Wittenberg.

<span class="mw-page-title-main">Spin-transfer torque</span> Physical magnetic effect

Spin-transfer torque (STT) is an effect in which the orientation of a magnetic layer in a magnetic tunnel junction or spin valve can be modified using a spin-polarized current.

Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Some of these candidates include: hybrid molecular/semiconductor electronics, one-dimensional nanotubes/nanowires or advanced molecular electronics.

Racetrack memory or domain-wall memory (DWM) is an experimental non-volatile memory device under development at IBM's Almaden Research Center by a team led by physicist Stuart Parkin. It is a current topic of active research at the Max Planck Institute of Microstructure Physics in Dr. Parkin's group. In early 2008, a 3-bit version was successfully demonstrated. If it were to be developed successfully, racetrack memory would offer storage density higher than comparable solid-state memory devices like flash memory.

Magnetic Nanorings are a form of magnetic nanoparticles, typically made of iron oxide in the shape of a ring. They have multiple applications in the medical field and computer engineering. In experimental trials, they provide a more localized form of cancer treatment by attacking individual cells instead of a general cancerous region of the body, as well as a clearer image of tumors by improving accuracy of cancer cell identification. They also allow for a more efficient and smaller, MRAM, which helps reduce the size of the technology houses it. Magnetic nanorings can be produced in various compositions, shapes, and sizes by using hematite nanorings as the base structure.

Spinmechatronics is neologism referring to an emerging field of research concerned with the exploitation of spin-dependent phenomena and established spintronic methodologies and technologies in conjunction with electro-mechanical, magno-mechanical, acousto-mechanical and opto-mechanical systems. Most especially, spinmechatronics concerns the integration of micro- and nano- mechatronic systems with spin physics and spintronics.

Spin engineering describes the control and manipulation of quantum spin systems to develop devices and materials. This includes the use of the spin degrees of freedom as a probe for spin based phenomena. Because of the basic importance of quantum spin for physical and chemical processes, spin engineering is relevant for a wide range of scientific and technological applications. Current examples range from Bose–Einstein condensation to spin-based data storage and reading in state-of-the-art hard disk drives, as well as from powerful analytical tools like nuclear magnetic resonance spectroscopy and electron paramagnetic resonance spectroscopy to the development of magnetic molecules as qubits and magnetic nanoparticles. In addition, spin engineering exploits the functionality of spin to design materials with novel properties as well as to provide a better understanding and advanced applications of conventional material systems. Many chemical reactions are devised to create bulk materials or single molecules with well defined spin properties, such as a single-molecule magnet. The aim of this article is to provide an outline of fields of research and development where the focus is on the properties and applications of quantum spin.

Everspin Technologies, Inc. is a publicly traded semiconductor company headquartered in Chandler, Arizona, United States. It develops and manufactures discrete magnetoresistive RAM or magnetoresistive random-access memory (MRAM) products, including Toggle MRAM and Spin-Transfer Torque MRAM (STT-MRAM) product families. It also licenses its technology for use in embedded MRAM (eMRAM) applications, magnetic sensor applications as well as performs backend foundry services for eMRAM.

<span class="mw-page-title-main">Bruce Gurney</span> American physicist and inventor

Bruce Alvin Gurney was an American physicist responsible for pioneering advances in magnetic recording. In particular, he was central to the development of the giant magnetoresistance (GMR) sensors first used in hard disk drives in 1997.

Kannan M. Krishnan is an Indian-American academic, author and entrepreneur. He is a professor of materials science and engineering, an adjunct professor of physics, and an Associate Faculty of the South Asia Centre, at the University of Washington, Seattle (UW).

<span class="mw-page-title-main">Spinterface</span>

Spinterface is a term coined to indicate an interface between a ferromagnet and an organic semiconductor. This is a widely investigated topic in molecular spintronics, since the role of interfaces plays a huge part in the functioning of a device. In particular, spinterfaces are widely studied in the scientific community because of their hybrid organic/inorganic composition. In fact, the hybridization between the metal and the organic material can be controlled by acting on the molecules, which are more responsive to electrical and optical stimuli than metals. This gives rise to the possibility of efficiently tuning the magnetic properties of the interface at the atomic scale.

Professor Lan Wang is a Chinese-Australian material scientist known for expertise in materials synthesis and advanced materials characterisation.

<span class="mw-page-title-main">Manuel Bibes</span> French Physicist working on Oxide Spintronics

Manuel Bibes, born on July 15, 1976, in Sainte-Foy-la-Grande, is a French physicist specializing in functional oxides, multiferroic materials, and spintronics. He is currently a Research Director at the National Center for Scientific Research (CNRS).

References

  1. 1 2 "DIENY Bernard".
  2. "Bernard Dieny". scholar.google.ca.
  3. "Bernard Dieny's research works | SPINTEC, Grenoble and other places". ResearchGate.
  4. "Nanotech France 2018 International Nanotechnology Conference & Exhibition". www.setcor.org.
  5. "ORCID". orcid.org.
  6. "Introduction to Magnetic Random-Access Memory".
  7. Dieny, B.; Speriosu, V. S.; Metin, S.; Parkin, S. S. P.; Gurney, B. A.; Baumgart, P.; Wilhoit, D. R. (April 15, 1991). "Magnetotransport properties of magnetically soft spin-valve structures (invited)". Journal of Applied Physics. 69 (8): 4774–4779. Bibcode:1991JAP....69.4774D. doi:10.1063/1.348252.
  8. "GMR Heads oral history panel at the Computer History Museum". September 29, 2019.
  9. Dieny, B. (1992). "Quantitative Interpretation of Giant Magnetoresistance Properties of Permalloy-Based Spin-Valve Structures". Europhysics Letters. 17 (3): 261–267. Bibcode:1992EL.....17..261D. doi:10.1209/0295-5075/17/3/013. S2CID   250855305.
  10. Monsma, D. J.; Lodder, J. C.; Popma, Th. J. A.; Dieny, B. (June 26, 1995). "Perpendicular Hot Electron Spin-Valve Effect in a New Magnetic Field Sensor: The Spin-Valve Transistor" (PDF). Physical Review Letters. 74 (26): 5260–5263. Bibcode:1995PhRvL..74.5260M. doi:10.1103/PhysRevLett.74.5260. PMID   10058723 via APS.
  11. "Crossover for in-plane to perpendicular anisotropy in Pt/CoFe/AlOx as a function of the Al degree of oxidation: a very accurate control of the oxidation of tunnel barrier".
  12. Dieny, B.; Chshiev, M. (June 28, 2017). "Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications". Reviews of Modern Physics. 89 (2): 025008. Bibcode:2017RvMP...89b5008D. doi:10.1103/RevModPhys.89.025008. S2CID   125438818 via APS.
  13. Mejdoubi, A.; Prenat, G.; Dieny, B. (May 17, 2012). "A compact model of precessional spin-transfer switching for MTJ with a perpendicular polarizer". 2012 28th International Conference on Microelectronics Proceedings (PDF). pp. 225–228. doi:10.1109/MIEL.2012.6222840. ISBN   978-1-4673-0238-8. S2CID   36177921 via IEEE Xplore.
  14. "Bernard Dieny - Developing multifunctional magneto electronic integrated circuits particularly suitable for the Internet of Objects (Magical)". CEA/English Portal. March 31, 2017.
  15. Nouvelle, L'Usine (August 20, 2020). "La spintronique, une filière d'avenir dans laquelle la France excelle" via www.usinenouvelle.com.{{cite journal}}: Cite journal requires |journal= (help)
  16. Dieny, B.; Prejbeanu, I. L.; Garello, K.; et al. (August 17, 2020). "Opportunities and challenges for spintronics in the microelectronics industry". Nature Electronics. 3 (8): 446–459. doi:10.1038/s41928-020-0461-5. hdl: 10261/234234 . S2CID   225522703 via www.nature.com.
  17. Coughlin, Tom. "MRAM In Perspective". Forbes.
  18. Leulmi, Selma; Chauchet, Xavier; Morcrette, Melissa; et al. (September 24, 2015). "Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane". Nanoscale. 7 (38): 15904–15914. Bibcode:2015Nanos...715904L. doi:10.1039/C5NR03518J. PMID   26364870 via pubs.rsc.org.
  19. "IEEE Fellows From the Magnetics Society". ieeemagnetics.org.
  20. "Thematic Prize 2015 Adrien Constantin de Magny awarded to Bernard DIENY by the French Sciences Academy". December 11, 2015.
  21. "Previous achievement award winners". ieeemagnetics.org.