Bernoulli's triangle

Last updated
Derivation of Bernoulli's triangle (blue bold text) from Pascal's triangle (pink italics) Bernoulli triangle derivation.svg
Derivation of Bernoulli's triangle (blue bold text) from Pascal's triangle (pink italics)

Bernoulli's triangle is an array of partial sums of the binomial coefficients. For any non-negative integer n and for any integer k included between 0 and n, the component in row n and column k is given by:

Contents

As the numbers of compositions of n +1 into k +1 ordered partitions form Pascal's triangle, the numbers of compositions of n +1 into k +1 or fewer ordered partitions form Bernoulli's triangle Pascal triangle compositions.svg
As the numbers of com­po­si­tions of n+1 into k+1 ordered partitions form Pascal's triangle, the numbers of compositions of n+1 into k+1 or fewer ordered partitions form Bernoulli's triangle

i.e., the sum of the first knth-order binomial coefficients. [1] The first rows of Bernoulli's triangle are:

Similarly to Pascal's triangle, each component of Bernoulli's triangle is the sum of two components of the previous row, except for the last number of each row, which is double the last number of the previous row. For example, if denotes the component in row n and column k, then:

Sequences derived from the Bernoulli triangle

Sequences from the On-Line Encyclopedia of Integer Sequences in Bernoulli's triangle Bernoulli triangle columns.svg
Sequences from the On-Line Encyclopedia of Integer Sequences in Bernoulli's triangle

As in Pascal's triangle and other similarly constructed triangles, [2] sums of components along diagonal paths in Bernoulli's triangle result in the Fibonacci numbers. [3]

As the third column of Bernoulli's triangle (k = 2) is a triangular number plus one, it forms the lazy caterer's sequence for n cuts, where n 2. [4] The fourth column (k = 3) is the three-dimensional analogue, known as the cake numbers, for n cuts, where n 3. [5]

The fifth column (k = 4) gives the maximum number of regions in the problem of dividing a circle into areas for n + 1 points, where n 4. [6]

In general, the (k + 1)th column gives the maximum number of regions in k-dimensional space formed by n 1(k 1)-dimensional hyperplanes, for nk. [7] It also gives the number of compositions (ordered partitions) of n + 1 into k + 1 or fewer parts. [8]

Related Research Articles

In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

<span class="mw-page-title-main">Fibonacci sequence</span> Numbers obtained by adding the two previous ones

In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes from 1 and 2. Starting from 0 and 1, the sequence begins

In mathematics, Pascal's triangle is a triangular array of the binomial coefficients arising in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, India, China, Germany, and Italy.

2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures.

34 (thirty-four) is the natural number following 33 and preceding 35.

<span class="mw-page-title-main">Lucas number</span> Infinite integer series where the next number is the sum of the two preceding it

The Lucas sequence is an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci sequence. Individual numbers in the Lucas sequence are known as Lucas numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials.

<span class="mw-page-title-main">Pentatope number</span> Number in the 5th cell of any row of Pascals triangle

In number theory, a pentatope number is a number in the fifth cell of any row of Pascal's triangle starting with the 5-term row 1 4 6 4 1, either from left to right or from right to left. It is named because it represents the number of 3-dimensional unit spheres which can be packed into a pentatope of increasing side lengths.

<span class="mw-page-title-main">Pell number</span> Natural number used to approximate √2

In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82.

<span class="mw-page-title-main">Padovan sequence</span> Sequence of integers

In number theory, the Padovan sequence is the sequence of integers P(n) defined by the initial values

Lozanić's triangle is a triangular array of binomial coefficients in a manner very similar to that of Pascal's triangle. It is named after the Serbian chemist Sima Lozanić, who researched it in his investigation into the symmetries exhibited by rows of paraffins.

Singmaster's conjecture is a conjecture in combinatorial number theory, named after the British mathematician David Singmaster who proposed it in 1971. It says that there is a finite upper bound on the multiplicities of entries in Pascal's triangle. It is clear that the only number that appears infinitely many times in Pascal's triangle is 1, because any other number x can appear only within the first x + 1 rows of the triangle.

5 (five) is a number, numeral and digit. It is the natural number, and cardinal number, following 4 and preceding 6, and is a prime number. It has garnered attention throughout history in part because distal extremities in humans typically contain five digits.

In mathematics, the Fibonacci numbers form a sequence defined recursively by:

In mathematics, a Delannoy number describes the number of paths from the southwest corner (0, 0) of a rectangular grid to the northeast corner (m, n), using only single steps north, northeast, or east. The Delannoy numbers are named after French army officer and amateur mathematician Henri Delannoy.

In mathematics, the Wythoff array is an infinite matrix of integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff. Every positive integer occurs exactly once in the array, and every integer sequence defined by the Fibonacci recurrence can be derived by shifting a row of the array.

<span class="mw-page-title-main">Bell triangle</span>

In mathematics, the Bell triangle is a triangle of numbers analogous to Pascal's triangle, whose values count partitions of a set in which a given element is the largest singleton. It is named for its close connection to the Bell numbers, which may be found on both sides of the triangle, and which are in turn named after Eric Temple Bell. The Bell triangle has been discovered independently by multiple authors, beginning with Charles Sanders Peirce (1880) and including also Alexander Aitken (1933) and Cohn et al. (1962), and for that reason has also been called Aitken's array or the Peirce triangle.

In the number theory of integer partitions, the numbers denote both the number of partitions of into exactly parts, and the number of partitions of into parts of maximum size exactly . These two types of partition are in bijection with each other, by a diagonal reflection of their Young diagrams. Their numbers can be arranged into a triangle, the triangle of partition numbers, in which the th row gives the partition numbers :

References

  1. On-Line Encyclopedia of Integer Sequences
  2. Hoggatt, Jr, V. E., A new angle on Pascal's triangle, Fibonacci Quarterly6(4) (1968) 221–234; Hoggatt, Jr, V. E., Convolution triangles for generalized Fibonacci numbers, Fibonacci Quarterly8(2) (1970) 158–171
  3. Neiter, D. & Proag, A., Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, 19 (2016) 16.8.3.
  4. "A000124 - Oeis".
  5. "A000125 - Oeis".
  6. "A000127 - Oeis".
  7. "A006261 - Oeis".
  8. "A008861 - Oeis".