Dividing a circle into areas

Last updated
The number of points (n), chords (c) and regions (rG) for first 6 terms of Moser's circle problem Circle division by chords.svg
The number of points (n),chords (c) and regions (rG) for first 6 terms of Moser's circle problem

In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem, has a solution by an inductive method. The greatest possible number of regions, , giving the sequence 1, 2, 4, 8, 16, 31, 57, 99, 163, 256, ... ( OEIS:  A000127 ). Though the first five terms match the geometric progression 2n 1, it deviates at n = 6, showing the risk of generalising from only a few observations.

Contents

Lemma

Lemma DividingACircleIntoAreas-Box.png
Lemma

If there are n points on the circle and one more point is added, n lines can be drawn from the new point to previously existing points. Two cases are possible. In the first case (a), the new line passes through a point where two or more old lines (between previously existing points) cross. In the second case (b), the new line crosses each of the old lines in a different point. It will be useful to know the following fact.

Lemma. The new point A can be chosen so that case b occurs for each of the new lines.

Proof. For the case a, three points must be on one line: the new point A, the old point O to which the line is drawn, and the point I where two of the old lines intersect. There are n old points O, and hence finitely many points I where two of the old lines intersect. For each O and I, the line OI crosses the circle in one point other than O. Since the circle has infinitely many points, it has a point A which will be on none of the lines OI. Then, for this point A and all of the old points O, case b will be true.

This lemma means that, if there are k lines crossing AO, then each of them crosses AO at a different point and k + 1 new areas are created by the line AO.

Solution

Inductive method

The lemma establishes an important property for solving the problem. By employing an inductive proof, one can arrive at a formula for f(n) in terms of f(n − 1).

Proof DividingACircleIntoAreas.svg
Proof

In the figure the dark lines are connecting points 1 through 4 dividing the circle into 8 total regions (i.e., f(4) = 8). This figure illustrates the inductive step from n = 4 to n = 5 with the dashed lines. When the fifth point is added (i.e., when computing f(5) using f(4)), this results in four new lines (the dashed lines in the diagram) being added, numbered 1 through 4, one for each point that they connect to. The number of new regions introduced by the fifth point can therefore be determined by considering the number of regions added by each of the 4 lines. Set i to count the lines being added. Each new line can cross a number of existing lines, depending on which point it is to (the value of i). The new lines will never cross each other, except at the new point.

The number of lines that each new line intersects can be determined by considering the number of points on the "left" of the line and the number of points on the "right" of the line. Since all existing points already have lines between them, the number of points on the left multiplied by the number of points on the right is the number of lines that will be crossing the new line. For the line to point i, there are

ni − 1

points on the left and

i − 1

points on the right, so a total of

(ni − 1) (i − 1)

lines must be crossed.

In this example, the lines to i = 1 and i = 4 each cross zero lines, while the lines to i = 2 and i = 3 each cross two lines (there are two points on one side and one on the other).

So the recurrence can be expressed as

which can be easily reduced to

Using the sums of the first natural numbers and the first squares, this combines to

Finally,

with

which yields

Combinatorics and topology method

k
n
01234Sum
111
2112
31214
413318
51464116
6151010531
71615201557
81721353599
918285670163
10193684126256
The series alternatively derived from
the sum of up to the first 5 terms
of each row of Pascal's triangle [1]
Proof without words that summing up to the first 5 terms on each row is equivalent to summing up to the first 3 odd terms of the next row Circle division by chords visual proof.svg
Proof without words that summing up to the first 5 terms on each row is equivalent to summing up to the first 3 odd terms of the next row

The lemma asserts that the number of regions is maximal if all "inner" intersections of chords are simple (exactly two chords pass through each point of intersection in the interior). This will be the case if the points on the circle are chosen "in general position". Under this assumption of "generic intersection", the number of regions can also be determined in a non-inductive way, using the formula for the Euler characteristic of a connected planar graph (viewed here as a graph embedded in the 2-sphere S 2).

A planar graph determines a cell decomposition of the plane with F faces (2-dimensional cells), E edges (1-dimensional cells) and V vertices (0-dimensional cells). As the graph is connected, the Euler relation for the 2-dimensional sphere S 2

holds. View the diagram (the circle together with all the chords) above as a planar graph. If the general formulas for V and E can both be found, the formula for F can also be derived, which will solve the problem.

Its vertices include the n points on the circle, referred to as the exterior vertices, as well as the interior vertices, the intersections of distinct chords in the interior of the circle. The "generic intersection" assumption made above guarantees that each interior vertex is the intersection of no more than two chords.

Thus the main task in determining V is finding the number of interior vertices. As a consequence of the lemma, any two intersecting chords will uniquely determine an interior vertex. These chords are in turn uniquely determined by the four corresponding endpoints of the chords, which are all exterior vertices. Any four exterior vertices determine a cyclic quadrilateral, and all cyclic quadrilaterals are convex quadrilaterals, so each set of four exterior vertices have exactly one point of intersection formed by their diagonals (chords). Further, by definition all interior vertices are formed by intersecting chords.

Therefore, each interior vertex is uniquely determined by a combination of four exterior vertices, where the number of interior vertices is given by

and so

The edges include the n circular arcs connecting pairs of adjacent exterior vertices, as well as the chordal line segments (described below) created inside the circle by the collection of chords. Since there are two groups of vertices: exterior and interior, the chordal line segments can be further categorized into three groups:

  1. Edges directly (not cut by other chords) connecting two exterior vertices. These are chords between adjacent exterior vertices, and form the perimeter of the polygon. There are n such edges.
  2. Edges connecting two interior vertices.
  3. Edges connecting an interior and exterior vertex.

To find the number of edges in groups 2 and 3, consider each interior vertex, which is connected to exactly four edges. This yields

edges. Since each edge is defined by two endpoint vertices, only the interior vertices were enumerated, group 2 edges are counted twice while group 3 edges are counted once only.

Every chord that is cut by another (i.e., chords not in group 1) must contain two group 3 edges, its beginning and ending chordal segments. As chords are uniquely determined by two exterior vertices, there are altogether

group 3 edges. This is twice the total number of chords that are not themselves members of group 1.

The sum of these results divided by two gives the combined number of edges in groups 2 and 3. Adding the n edges from group 1, and the n circular arc edges brings the total to

Substituting V and E into the Euler relation solved for F, one then obtains

Since one of these faces is the exterior of the circle, the number of regions rG inside the circle is F − 1, or

which resolves to

which yields the same quartic polynomial obtained by using the inductive method

r
G
{\displaystyle r_{G}}
(purple) and other OEIS sequences in Bernoulli's triangle Bernoulli triangle columns.svg
(purple) and other OEIS sequences in Bernoulli's triangle

The fifth column of Bernoulli's triangle (k = 4) gives the maximum number of regions in the problem of dividing a circle into areas for n + 1 points, where n 4.

Application to mathematical billiards inside the circle

Considering the force-free motion of a particle inside a circle it was shown (see D. Jaud) that for specific reflection angles along the circle boundary the associated area division sequence is given by an arithmetic series.

Evenly-spaced points

If the points are uniformly spaced around the circle, the number of regions is reduced for even n> 4, yielding the OEIS sequence A006533: [2]

n12345678910111213141516171819202122232425
rG12481631579916325638656279410931471194125173214404850366196754791091090312951
rG124816305788163230386456794966147117122517248440484520619668429109904812951
Maximum number of regions that an inscribed hexagon and its diagonals can divide a circle (top) compared to when the hexagon is regular (bottom) Circle division by chords 6 points.svg
Maximum number of regions that an inscribed hexagon and its diagonals can divide a circle (top) compared to when the hexagon is regular (bottom)

Though the number of divisors of n! for n> 0 also start with 1, 2, 4, 8, 16 and 30, the following terms (60, 96, 160, 270, 540, 792, ) diverge from the above. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc.

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

In geometry, a polygon is a plane figure made up of line segments connected to form a closed polygonal chain.

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph, or a planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle. The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex; the shortest segment between the base and apex is the height. The area of a triangle equals one-half the product of height and base length.

<span class="mw-page-title-main">Simplex</span> Multi-dimensional generalization of triangle

In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example,

<span class="mw-page-title-main">Bisection</span> Division of something into two equal or congruent parts

In geometry, bisection is the division of something into two equal or congruent parts. Usually it involves a bisecting line, also called a bisector. The most often considered types of bisectors are the segment bisector, a line that passes through the midpoint of a given segment, and the angle bisector, a line that passes through the apex of an angle . In three-dimensional space, bisection is usually done by a bisecting plane, also called the bisector.

<span class="mw-page-title-main">Centroid</span> Mean position of all the points in a shape

In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any object in -dimensional Euclidean space.

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

<span class="mw-page-title-main">24-cell</span> Regular object in four dimensional geometry

In four-dimensional geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.

<span class="mw-page-title-main">Incenter</span> Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

<span class="mw-page-title-main">Decagon</span> Shape with ten sides

In geometry, a decagon is a ten-sided polygon or 10-gon. The total sum of the interior angles of a simple decagon is 1440°.

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular and equilateral. Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.

<span class="mw-page-title-main">Diagonal</span> In geometry a line segment joining two nonconsecutive vertices of a polygon or polyhedron

In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word diagonal derives from the ancient Greek διαγώνιος diagonios, "from corner to corner" ; it was used by both Strabo and Euclid to refer to a line connecting two vertices of a rhombus or cuboid, and later adopted into Latin as diagonus.

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

<span class="mw-page-title-main">Icosagon</span> Polygon with 20 edges

In geometry, an icosagon or 20-gon is a twenty-sided polygon. The sum of any icosagon's interior angles is 3240 degrees.

<span class="mw-page-title-main">120-cell</span> Four-dimensional analog of the dodecahedron

In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid.

<span class="mw-page-title-main">Pentagon</span> Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

In mathematics, the Schoenflies problem or Schoenflies theorem, of geometric topology is a sharpening of the Jordan curve theorem by Arthur Schoenflies. For Jordan curves in the plane it is often referred to as the Jordan–Schoenflies theorem.

<span class="mw-page-title-main">Laves graph</span> Periodic spatial graph

In geometry and crystallography, the Laves graph is an infinite and highly symmetric system of points and line segments in three-dimensional Euclidean space, forming a periodic graph. Three equal-length segments meet at 120° angles at each point, and all cycles use ten or more segments. It is the shortest possible triply periodic graph, relative to the volume of its fundamental domain. One arrangement of the Laves graph uses one out of every eight of the points in the integer lattice as its points, and connects all pairs of these points that are nearest neighbors, at distance . It can also be defined, divorced from its geometry, as an abstract undirected graph, a covering graph of the complete graph on four vertices.

References

  1. OEIS:  A000127
  2. OEIS:  A006533
  3. OEIS:  A027423