In elementary geometry, the pizza theorem states the equality of two areas that arise when one partitions a disk in a certain way.
The theorem is so called because it mimics a traditional pizza slicing technique. It shows that if two people share a pizza sliced into 8 pieces (or any multiple of 4 greater than 8), and take alternating slices, then they will each get an equal amount of pizza, irrespective of the central cutting point.
Let p be an interior point of the disk, and let n be a multiple of 4 that is greater than or equal to 8. Form n sectors of the disk with equal angles by choosing an arbitrary line through p, rotating the line n/2 − 1 times by an angle of 2π/n radians, and slicing the disk on each of the resulting n/2 lines. Number the sectors consecutively in a clockwise or anti-clockwise fashion. Then the pizza theorem states that:
The pizza theorem was originally proposed as a challenge problem by Upton (1967). The published solution to this problem, by Michael Goldberg, involved direct manipulation of the algebraic expressions for the areas of the sectors. Carter & Wagon (1994a) provide an alternative proof by dissection. They show how to partition the sectors into smaller pieces so that each piece in an odd-numbered sector has a congruent piece in an even-numbered sector, and vice versa. Frederickson (2012) gave a family of dissection proofs for all cases (in which the number of sectors is 8, 12, 16, ...).
The requirement that the number of sectors be a multiple of four is necessary: as Don Coppersmith showed, dividing a disk into four sectors, or a number of sectors that is not divisible by four, does not in general produce equal areas. Mabry & Deiermann (2009) answered a problem of Carter & Wagon (1994b) by providing a more precise version of the theorem that determines which of the two sets of sectors has greater area in the cases that the areas are unequal. Specifically, if the number of sectors is 2 (mod 8) and no slice passes through the center of the disk, then the subset of slices containing the center has smaller area than the other subset, while if the number of sectors is 6 (mod 8) and no slice passes through the center, then the subset of slices containing the center has larger area. An odd number of sectors is not possible with straight-line cuts, and a slice through the center causes the two subsets to be equal regardless of the number of sectors.
Mabry & Deiermann (2009) also observe that, when the pizza is divided evenly, then so is its crust (the crust may be interpreted as either the perimeter of the disk or the area between the boundary of the disk and a smaller circle having the same center, with the cut-point lying in the latter's interior), and since the disks bounded by both circles are partitioned evenly so is their difference. However, when the pizza is divided unevenly, the diner who gets the most pizza area actually gets the least crust.
As Hirschhorn et al. (1999) note, an equal division of the pizza also leads to an equal division of its toppings, as long as each topping is distributed in a disk (not necessarily concentric with the whole pizza) that contains the central point p of the division into sectors.
Hirschhorn et al. (1999) show that a pizza sliced in the same way as the pizza theorem, into a number n of sectors with equal angles where n is divisible by four, can also be shared equally among n/4 people. For instance, a pizza divided into 12 sectors can be shared equally by three people as well as by two; however, to accommodate all five of the Hirschhorns, a pizza would need to be divided into 20 sectors.
Cibulka et al. (2010) and Knauer, Micek & Ueckerdt (2011) study the game theory of choosing free slices of pizza in order to guarantee a large share, a problem posed by Dan Brown and Peter Winkler. In the version of the problem they study, a pizza is sliced radially (without the guarantee of equal-angled sectors) and two diners alternately choose pieces of pizza that are adjacent to an already-eaten sector. If the two diners both try to maximize the amount of pizza they eat, the diner who takes the first slice can guarantee a 4/9 share of the total pizza, and there exists a slicing of the pizza such that he cannot take more. The fair division or cake cutting problem considers similar games in which different players have different criteria for how they measure the size of their share; for instance, one diner may prefer to get the most pepperoni while another diner may prefer to get the most cheese.
Brailov (2021), Brailov (2022), Ehrenborg, Morel & Readdy (2022), and Ehrenborg, Morel & Readdy (2023) extend this result to higher dimensions, i.e. for certain arrangements of hyperplanes, the alternating sum of volumes cut out by the hyperplanes is zero.
Compare with the ham sandwich theorem, a result about slicing n-dimensional objects. The two-dimensional version implies that any pizza, no matter how misshapen, can have its area and its crust length simultaneously bisected by a single carefully chosen straight-line cut. The three-dimensional version implies the existence of a plane cut that equally shares base, tomato and cheese.
In mathematics, the Borsuk–Ulam theorem states that every continuous function from an n-sphere into Euclidean n-space maps some pair of antipodal points to the same point. Here, two points on a sphere are called antipodal if they are in exactly opposite directions from the sphere's center.
Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function mapping a nonempty compact convex set to itself, there is a point such that . The simplest forms of Brouwer's theorem are for continuous functions from a closed interval in the real numbers to itself or from a closed disk to itself. A more general form than the latter is for continuous functions from a nonempty convex compact subset of Euclidean space to itself.
In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. Adjacent means that two regions share a common boundary of non-zero length. It was the first major theorem to be proved using a computer. Initially, this proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand. The proof has gained wide acceptance since then, although some doubts remain.
In real analysis the Heine–Borel theorem, named after Eduard Heine and Émile Borel, states:
In mathematics, Hall's marriage theorem, proved by Philip Hall, is a theorem with two equivalent formulations. In each case, the theorem gives a necessary and sufficient condition for an object to exist:
In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,
In mathematics, and more specifically number theory, the superfactorial of a positive integer is the product of the first factorials. They are a special case of the Jordan–Pólya numbers, which are products of arbitrary collections of factorials.
In combinatorics, bijective proof is a proof technique for proving that two sets have equally many elements, or that the sets in two combinatorial classes have equal size, by finding a bijective function that maps one set one-to-one onto the other. This technique can be useful as a way of finding a formula for the number of elements of certain sets, by corresponding them with other sets that are easier to count. Additionally, the nature of the bijection itself often provides powerful insights into each or both of the sets.
In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a piecewise-linear Jordan curve consisting of finitely many line segments. These polygons include as special cases the convex polygons, star-shaped polygons, and monotone polygons.
In mathematics, the "happy ending problem" is the following statement:
Viviani's theorem, named after Vincenzo Viviani, states that the sum of the shortest distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. It is a theorem commonly employed in various math competitions, secondary school mathematics examinations, and has wide applicability to many problems in the real world.
In mathematics, Tucker's lemma is a combinatorial analog of the Borsuk–Ulam theorem, named after Albert W. Tucker.
In number theory, Jacobi's four-square theorem gives a formula for the number of ways that a given positive integer n can be represented as the sum of four squares.
The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be put back together in a different way to yield two identical copies of the original ball. Indeed, the reassembly process involves only moving the pieces around and rotating them without changing their shape. However, the pieces themselves are not "solids" in the usual sense, but infinite scatterings of points. The reconstruction can work with as few as five pieces.
András Hajnal was a professor of mathematics at Rutgers University and a member of the Hungarian Academy of Sciences known for his work in set theory and combinatorics.
In the mathematical theory of minimal surfaces, the double bubble theorem states that the shape that encloses and separates two given volumes and has the minimum possible surface area is a standard double bubble: three spherical surfaces meeting at angles of 120° on a common circle. The double bubble theorem was formulated and thought to be true in the 19th century, and became a "serious focus of research" by 1989, but was not proven until 2002.
Blichfeldt's theorem is a mathematical theorem in the geometry of numbers, stating that whenever a bounded set in the Euclidean plane has area , it can be translated so that it includes at least points of the integer lattice. Equivalently, every bounded set of area contains a set of points whose coordinates all differ by integers.
In mathematical analysis, Netto's theorem states that continuous bijections of smooth manifolds preserve dimension. That is, there does not exist a continuous bijection between two smooth manifolds of different dimension. It is named after Eugen Netto.
{{citation}}
: CS1 maint: postscript (link).{{citation}}
: CS1 maint: postscript (link).