Bioactive paper

Last updated

Bioactive paper is a paper-based sensor that can identify various contaminants in food and water. First developed in 2009, bioactive paper research has been ongoing and in 2011 was awarded a 5-year grant totalling $7.5 million CAD. [1] It has been developed at the biosensor stage level, which means it can detect pesticides [2] but is not yet able to repel and deactivate toxins. However, its ability to detect potential hazards has applications for human health and safety. [3] The benefits of bioactive paper are that it is simple, portable, disposable, and inexpensive. [4]

Contents

Development

Bioactive paper was developed by Canada’s Sentinel Bioactive Paper Network, a consortium of researchers, industrial and university, partners, and students. [1] The Network is hosted by McMaster University in Hamilton, Ontario and is led by Dr. Robert Pelton, scientific director and Dr. George Rosenberg, managing director.

John Brennan and his research team at McMaster University developed the method to create bioactive paper by printing contaminant-detecting biosensors that are based on combinations of antibodies, enzymes, aptamers or bacteriophages, onto the structure of the paper. [1] These combinations then attach themselves to pathogens and other contaminants resulting in a detectable response. The biologically active chemicals are in the form of an ‘ink’ that can be printed, coated or impregnated onto or into paper using existing paper-making and high-speed printing processes. This ink is coated in different layers. The ink is similar to that found in a regular computer print cartridge, but it has special additives that make it biocompatible.

It is made up of biocompatible silica nanoparticles that are deposited onto the paper first, then another ink containing the enzyme is applied. The bio-ink result forms a thin film of enzyme that is trapped in the silica on the paper. [5] When the paper is exposed to a toxin, molecules in the ink change colour based on the amount of toxins in the sample.

While bioactive paper is not available to the public yet, it is getting closer to commercialization. Bioactive paper also has a good shelf life. Researchers said the strip could still be used effectively for at least two months when stored properly.

Applications

One current application of bioactive paper can be applied to bioterrorism and food safety, as it can detect acetylcholinesterase, or a nerve agent. [3] With this advancement, bioactive paper has become a product of interest for the military and the packaging industry. [3] While efforts are underway to develop more applications of bioactive paper, there are currently four major areas of bioactive paper usage and research: paper-based bioassay or paper-based analytical devices for sample conditioning;pathogen detection for food and water quality monitoring; counterfeiting and countertempering in the packaging and construction industries; and deactivation of pathogenic bacteria using antimicrobial paper. [5]

Food-borne illness

Approximately 76-million food-borne illnesses occur each in the United States, accounting for more than 325,000 hospitalizations and 5,000 deaths [Mead et al., 1999]. Most of these illnesses are caused by Campylobacter, Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes. As a result, annual medical expenditures related to these pathogens currently exceed $7 billion US. Consumer education coupled with reliable and simple pathogen detection in food products offers the best method for dramatically reducing the frequency of occurrence of these illnesses.

The most recent development involved being able to detect pesticides on food even after they’ve been washed. This innovation is a benefit to developing countries that may use banned pesticides on their food because they’re cheaper.

Water contamination

In the developing world, the water is often of questionable quality, forcing the local population to try rudimentary filtration systems, such as the use of unsanitary cloth in a vain attempt to create potable water. This method is obviously not reliable and the results are rarely safe for consumption, particularly after floods and other natural disasters. Think of the benefits of a bioactive paper strip which, when dipped in small containers of water, can remove pathogens and give the user a colour indication that the water is safe to use.

Health care

Another potential use of bioactive paper includes the creation of face masks that protect health care workers by actively binding viruses and anchoring them to the filter surface which would prevent them from passing through the filter’s pores.

Packaging

Because it can easily test for certain components, there is interest for bioactive paper to be used in the packaging industry. Specifically, companies are considering bioactive paper as a way to detect counterfeit items or tampering. [4] Other uses include microbial detection or possible antimicrobial properties. [4]

Related Research Articles

A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The sensitive biological element, e.g. tissue, microorganisms, organelles, cell receptors, enzymes, antibodies, nucleic acids, etc., is a biologically derived material or biomimetic component that interacts with, binds with, or recognizes the analyte under study. The biologically sensitive elements can also be created by biological engineering. The transducer or the detector element, which transforms one signal into another one, works in a physicochemical way: optical, piezoelectric, electrochemical, electrochemiluminescence etc., resulting from the interaction of the analyte with the biological element, to easily measure and quantify. The biosensor reader device connects with the associated electronics or signal processors that are primarily responsible for the display of the results in a user-friendly way. This sometimes accounts for the most expensive part of the sensor device, however it is possible to generate a user friendly display that includes transducer and sensitive element. The readers are usually custom-designed and manufactured to suit the different working principles of biosensors.

Nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and analyzed. There are several ways proposed today to make nanosensors; these include top-down lithography, bottom-up assembly, and molecular self-assembly. There are different types of nanosensors in the market and in development for various applications, most notably in defense, environmental, and healthcare industries. These sensors share the same basic workflow: a selective binding of an analyte, signal generation from the interaction of the nanosensor with the bio-element, and processing of the signal into useful metrics.

Immunoassay Biochemical test for a protein or other molecule using an antibody

An immunoassay is a biochemical test that measures the presence or concentration of a macromolecule or a small molecule in a solution through the use of an antibody (usually) or an antigen (sometimes). The molecule detected by the immunoassay is often referred to as an "analyte" and is in many cases a protein, although it may be other kinds of molecules, of different sizes and types, as long as the proper antibodies that have the required properties for the assay are developed. Analytes in biological liquids such as serum or urine are frequently measured using immunoassays for medical and research purposes.

Molecular imprinting Technique in polymer chemistry

Molecular imprinting is a technique to create template-shaped cavities in polymer matrices with predetermined selectivity and high affinity. This technique is based on the system used by enzymes for substrate recognition, which is called the "lock and key" model. The active binding site of an enzyme has a shape specific to a substrate. Substrates with a complementary shape to the binding site selectively bind to the enzyme; alternative shapes that do not fit the binding site are not recognized.

Aptamer

Aptamers are oligonucleotide or peptide molecules that bind to a specific target molecule. Aptamers are usually created by selecting them from a large random sequence pool, but natural aptamers also exist in riboswitches. Aptamers can be used for both basic research and clinical purposes as macromolecular drugs. Aptamers can be combined with ribozymes to self-cleave in the presence of their target molecule. These compound molecules have additional research, industrial and clinical applications.

A molecularly imprinted polymer (MIP) is a polymer that has been processed using the molecular imprinting technique which leaves cavities in the polymer matrix with an affinity for a chosen "template" molecule. The process usually involves initiating the polymerization of monomers in the presence of a template molecule that is extracted afterwards, leaving behind complementary cavities. These polymers have affinity for the original molecule and have been used in applications such as chemical separations, catalysis, or molecular sensors. Published works on the topic date to the 1930s.

Artificial enzyme

An artificial enzyme is a synthetic, organic molecule or ion that recreates some function of an enzyme. The area promises to deliver catalysis at rates and selectivity observed in many enzymes.

Food contaminant

Food contamination refers to the presence of harmful chemicals and microorganisms in food, which can cause consumer illness. This article addresses the chemical contamination of foods, as opposed to microbiological contamination, which can be found under foodborne illness.

A biointerface is the region of contact between a biomolecule, cell, biological tissue or living organism or organic material considered living with another biomaterial or inorganic/organic material. The motivation for biointerface science stems from the urgent need to increase the understanding of interactions between biomolecules and surfaces. The behavior of complex macromolecular systems at materials interfaces are important in the fields of biology, biotechnology, diagnostics, and medicine. Biointerface science is a multidisciplinary field in which biochemists who synthesize novel classes of biomolecules cooperate with scientists who have developed the tools to position biomolecules with molecular precision, scientists who have developed new spectroscopic techniques to interrogate these molecules at the solid-liquid interface, and people who integrate these into functional devices.

Electrochemiluminescence

Electrochemiluminescence or electrogenerated chemiluminescence (ECL) is a kind of luminescence produced during electrochemical reactions in solutions. In electrogenerated chemiluminescence, electrochemically generated intermediates undergo a highly exergonic reaction to produce an electronically excited state that then emits light upon relaxation to a lower-level state. This wavelength of the emitted photon of light corresponds to the energy gap between these two states. ECL excitation can be caused by energetic electron transfer (redox) reactions of electrogenerated species. Such luminescence excitation is a form of chemiluminescence where one/all reactants are produced electrochemically on the electrodes.

Magnetic nanoparticles are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly consist of two components, a magnetic material, often iron, nickel and cobalt, and a chemical component that has functionality. While nanoparticles are smaller than 1 micrometer in diameter, the larger microbeads are 0.5–500 micrometer in diameter. Magnetic nanoparticle clusters that are composed of a number of individual magnetic nanoparticles are known as magnetic nanobeads with a diameter of 50–200 nanometers. Magnetic nanoparticle clusters are a basis for their further magnetic assembly into magnetic nanochains. The magnetic nanoparticles have been the focus of much research recently because they possess attractive properties which could see potential use in catalysis including nanomaterial-based catalysts, biomedicine and tissue specific targeting, magnetically tunable colloidal photonic crystals, microfluidics, magnetic resonance imaging, magnetic particle imaging, data storage, environmental remediation, nanofluids, optical filters, defect sensor, magnetic cooling and cation sensors.

Microbial toxins are toxins produced by micro-organisms, including bacteria and fungi. Microbial toxins promote infection and disease by directly damaging host tissues and by disabling the immune system. Some bacterial toxins, such as Botulinum neurotoxins, are the most potent natural toxins known. However, microbial toxins also have important uses in medical science and research. Currently, new methods of detecting bacterial toxins are being developed to better isolate and understand these toxin. Potential applications of toxin research include combating microbial virulence, the development of novel anticancer drugs and other medicines, and the use of toxins as tools in neurobiology and cellular biology.

The eastern blot, or eastern blotting, is a biochemical technique used to analyze protein post-translational modifications including the addition of lipids, phosphates, and glycoconjugates. It is most often used to detect carbohydrate epitopes. Thus, eastern blot can be considered an extension of the biochemical technique of western blot. Multiple techniques have been described by the term "eastern blot(ting)", most use prospo protein blotted from sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gel on to a polyvinylidene fluoride or nitrocellulose membrane. Transferred proteins are analyzed for post-translational modifications using probes that may detect lipids, carbohydrate, phosphorylation or any other protein modification. Eastern blotting should be used to refer to methods that detect their targets through specific interaction of the post-translational modifications and the probe, distinguishing them from a standard far-western blot. In principle, eastern blotting is similar to lectin blotting.

Fluorescent glucose biosensors are devices that measure the concentration of glucose in diabetic patients by means of sensitive protein that relays the concentration by means of fluorescence, an alternative to amperometric sension of glucose. Due to the prevalence of diabetes, it is the prime drive in the construction of fluorescent biosensors. A recent development has been approved by the FDA allowing a new continuous glucose monitoring system called EverSense, which is a 90 day glucose monitor using fluorescent biosensors.

Nanoremediation is the use of nanoparticles for environmental remediation. It is being explored to treat ground water, wastewater, soil, sediment, or other contaminated environmental materials. Nanoremediation is an emerging industry; by 2009, nanoremediation technologies had been documented in at least 44 cleanup sites around the world, predominantly in the United States. In Europe, nanoremediation is being investigated by the EC funded NanoRem Project. A report produced by the NanoRem consortium has identified around 70 nanoremediation projects worldwide at pilot or full scale. During nanoremediation, a nanoparticle agent must be brought into contact with the target contaminant under conditions that allow a detoxifying or immobilizing reaction. This process typically involves a pump-and-treat process or in situ application.

Optimer ligand

Optimer ligands are short synthetic oligonucleotide molecules composed of DNA or RNA that bind to a specific target molecule. They are engineered to bind their target molecules with affinity typically in the low nanomolar range. Optimers can be used as antibody mimetics in a range of applications, and have been optimized to increase their stability, reduce their molecular weight, and offer increased scalability and consistency in manufacture compared to standard aptamer molecules.

Paper-based microfluidics are microfluidic devices that consist of a series of hydrophilic cellulose or nitrocellulose fibers that transport fluid from an inlet through the porous medium to a desired outlet or region of the device, by means of capillary action. This technology builds on the conventional lateral flow test which is capable of detecting many infections agents and chemical contaminants. The main advantage of this is that it is largely a passively controlled device unlike more complex microfluidic devices. Development of paper-based microfluidic devices began in the early 21st century to meet a need for inexpensive and portable medical diagnostic systems.

Frances S. Ligler is a biochemist and bioengineer who was a 2017 inductee of the National Inventors Hall of Fame. Ligler's research dramatically improved the effectiveness of biosensors while at the same time reducing their size and increasing automation. Her work on biosensors made it easier to detect toxins and pathogens in food, water, or when airborne.

Paper-based biosensor

Paper-based biosensors are a subset of paper-based microfluidics used to detect the presence of pathogens in water. Paper-based detection devices have been touted for their low cost, portability and ease of use. Its portability in particular makes it an good candidate for point-of-care testing. However, there are also limitations to these assays, and scientists are continually working to improve accuracy, sensitivity, and ability to test for multiple contaminants at the same time.

Screen-printed electrodes (SPEs) are electrochemical measurement devices that are manufactured by printing different types of ink on plastic or ceramic substrates, allowing quick in-situ analysis with high reproducibility, sensitivity and accuracy. The composition of the different inks used in the manufacture of the electrode determines its selectivity and sensitivity. This fact allows the analyst to design the most optimal device according to its purpose.

References

  1. 1 2 3 "Bioactive Paper Research Receives Added Funding for Bioactive Paper Development". PaperMoney. 2011-03-01. Retrieved 2018-03-01.
  2. Kavruk, Murat; Özalp, Veli Cengiz; Öktem, Hüseyin Avni (2013). "Portable Bioactive Paper-Based Sensor for Quantification of Pesticides". Journal of Analytical Methods in Chemistry. 2013: 1–8. doi: 10.1155/2013/932946 . PMC   3736481 . PMID   23971002.
  3. 1 2 3 Pelton, Robert (2009). "Bioactive paper provides a low-cost platform for diagnostics". TrAC Trends in Analytical Chemistry. 28 (8): 925–942. doi:10.1016/j.trac.2009.05.005. PMC   7127295 . PMID   32287534.
  4. 1 2 3 Kong, Fanzhi; Hu, Yim Fun (2012). "Biomolecule immobilization techniques for bioactive paper fabrication". Analytical and Bioanalytical Chemistry. 403 (1): 7–13. doi:10.1007/s00216-012-5821-1. PMID   22367243. S2CID   25919168.
  5. 1 2 Zhao, Zhengyang; Tian, Junfei; Wu, Zhangxiong; Liu, Jian; Zhao, Dongyuan; Shen, Wei; He, Lizhong (2013-08-28). "Enhancing enzymatic stability of bioactive papers by implanting enzyme-immobilized mesoporous silica nanorods into paper". Journal of Materials Chemistry B. 1 (37): 4719–4722. doi:10.1039/c3tb20953a. ISSN   2050-7518. PMID   32261154.