Biosolarization

Last updated

Biosolarization is an alternative technology to soil fumigation used in agriculture. It is closely related to biofumigation and soil solarization, or the use of solar power to control nematodes, bacteria, fungi and other pests that damage crops. [1] In solarization, the soil is mulched and covered with a tarp to trap solar radiation and heat the soil to a temperature that kills pests. Biosolarization adds the use of organic amendments or compost to the soil before it is covered with plastic, which speeds up the solarization process by decreasing the soil treatment time through increased microbial activity. [2] Research conducted in Spain on the use of biosolarization in strawberry fruit production has shown it to be a sustainable and cost effective option. [3] [4] The practice of biosolarization is being used among small agricultural operations in California. [5] Biosolarization is a growing practice in response to the need for methods for organic soil solarization. The option for more widespread use of biosolarization is being studied by researchers at the Western Center for Agricultural Health and Safety at the University of California at Davis in order to validate the effectiveness of biosolarization in commercial agriculture in California, where it has the potential to greatly reduce the use of conventional fumigants. Biosolarization can also use as organic waste management practice. Recent studies showed the potential of food industrial residues as soil amendments that can improve the efficiency of biosolarization. [6] [7]

Related Research Articles

<span class="mw-page-title-main">Compost</span> Mixture used to improve soil fertility

Compost is a mixture of ingredients used as plant fertilizer and to improve soil's physical, chemical, and biological properties. It is commonly prepared by decomposing plant and food waste, recycling organic materials, and manure. The resulting mixture is rich in plant nutrients and beneficial organisms, such as bacteria, protozoa, nematodes, and fungi. Compost improves soil fertility in gardens, landscaping, horticulture, urban agriculture, and organic farming, reducing dependency on commercial chemical fertilizers. The benefits of compost include providing nutrients to crops as fertilizer, acting as a soil conditioner, increasing the humus or humic acid contents of the soil, and introducing beneficial microbes that help to suppress pathogens in the soil and reduce soil-borne diseases.

<span class="mw-page-title-main">Vermicompost</span> Product of the composting process using various species of worms

Vermicompost (vermi-compost) is the product of the decomposition process using various species of worms, usually red wigglers, white worms, and other earthworms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vermicast. This process is called vermicomposting, with the rearing of worms for this purpose is called vermiculture.

<span class="mw-page-title-main">Sustainable agriculture</span> Farming approach that balances environmental, economic and social factors in the long term

Sustainable agriculture is farming in sustainable ways meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs. It can be based on an understanding of ecosystem services. There are many methods to increase the sustainability of agriculture. When developing agriculture within sustainable food systems, it is important to develop flexible business process and farming practices. Agriculture has an enormous environmental footprint, playing a significant role in causing climate change, water scarcity, water pollution, land degradation, deforestation and other processes; it is simultaneously causing environmental changes and being impacted by these changes. Sustainable agriculture consists of environment friendly methods of farming that allow the production of crops or livestock without damage to human or natural systems. It involves preventing adverse effects to soil, water, biodiversity, surrounding or downstream resources—as well as to those working or living on the farm or in neighboring areas. Elements of sustainable agriculture can include permaculture, agroforestry, mixed farming, multiple cropping, and crop rotation.

<span class="mw-page-title-main">Organic fertilizer</span> Fertilizer developed from natural processes

Organic fertilizers are fertilizers that are naturally produced. Fertilizers are materials that can be added to soil or plants, in order to provide nutrients and sustain growth. Typical organic fertilizers include all animal waste including meat processing waste, manure, slurry, and guano; plus plant based fertilizers such as compost; and biosolids. Inorganic "organic fertilizers" include minerals and ash. The organic-mess refers to the Principles of Organic Agriculture, which determines whether a fertilizer can be used for commercial organic agriculture, not whether the fertilizer consists of organic compounds.

<i>Hermetia illucens</i> Common and widespread fly of the family Stratiomyidae

Hermetia illucens, the black soldier fly, is a common and widespread fly of the family Stratiomyidae. Since the late 20th century, H. illucens has increasingly been gaining attention because of its usefulness for recycling organic waste and generating animal feed.

<span class="mw-page-title-main">Green waste</span> Biodegradable waste

Green waste, also known as "biological waste", is any organic waste that can be composted. It is most usually composed of refuse from gardens such as grass clippings or leaves, and domestic or industrial kitchen wastes. Green waste does not include things such as dried leaves, pine straw, or hay. Such materials are rich in carbon and considered "brown wastes," while green wastes contain high concentrations of nitrogen. Green waste can be used to increase the efficiency of many composting operations and can be added to soil to sustain local nutrient cycling.

<span class="mw-page-title-main">Digestate</span> Material remaining after the anaerobic digestion of a biodegradable feedstock

Digestate is the material remaining after the anaerobic digestion of a biodegradable feedstock. Anaerobic digestion produces two main products: digestate and biogas. Digestate is produced both by acidogenesis and methanogenesis and each has different characteristics. These characteristics stem from the original feedstock source as well as the processes themselves.

<i>Athelia rolfsii</i> Pathogen fungus

Athelia rolfsii is a corticioid fungus in the family Atheliaceae. It is a facultative plant pathogen and is the causal agent of "southern blight" disease in crops.

<i>Macrophomina phaseolina</i> Species of fungus

Macrophomina phaseolina is a Botryosphaeriaceae plant pathogen fungus that causes damping off, seedling blight, collar rot, stem rot, charcoal rot, basal stem rot, and root rot on many plant species.

Soil solarization is a non-chemical environmentally friendly method for controlling pests using solar power to increase the soil temperature to levels at which many soil-borne plant pathogens will be killed or greatly weakened. Soil solarization is used in warm climates on a relatively small scale in gardens and organic farms. Soil solarization weakens and kills fungi, bacteria, nematodes, and insect and mite pests along with weeds in the soil by mulching the soil and covering it with a tarp, usually with a transparent polyethylene cover to trap solar energy. This energy causes physical, chemical, and biological changes in the soil community. Soil solarization is dependent upon time, temperature, and soil moisture. It may also be described as methods of decontaminating soil or creating suppressive soils by the use of sunlight.

<span class="mw-page-title-main">Agricultural pollution</span> Type of pollution caused by agriculture

Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.

Soil management is the application of operations, practices, and treatments to protect soil and enhance its performance. It includes soil conservation, soil amendment, and optimal soil health. In agriculture, some amount of soil management is needed both in nonorganic and organic types to prevent agricultural land from becoming poorly productive over decades. Organic farming in particular emphasizes optimal soil management, because it uses soil health as the exclusive or nearly exclusive source of its fertilization and pest control.

<span class="mw-page-title-main">Manure</span> Organic matter, mostly derived from animal feces, which can be used as fertilizer

Manure is organic matter that is used as organic fertilizer in agriculture. Most manure consists of animal feces; other sources include compost and green manure. Manures contribute to the fertility of soil by adding organic matter and nutrients, such as nitrogen, that are utilised by bacteria, fungi and other organisms in the soil. Higher organisms then feed on the fungi and bacteria in a chain of life that comprises the soil food web.

<span class="mw-page-title-main">Reuse of human excreta</span> Safe, beneficial use of human excreta mainly in agriculture (after treatment)

Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta. To a lesser extent, reuse of the excreta's water content might also take place, although this is better known as water reclamation from municipal wastewater. The intended reuse applications for the nutrient content may include: soil conditioner or fertilizer in agriculture or horticultural activities. Other reuse applications, which focus more on the organic matter content of the excreta, include use as a fuel source or as an energy source in the form of biogas.

<span class="mw-page-title-main">Soil regeneration</span>

Soil regeneration, as a particular form of ecological regeneration within the field of restoration ecology, is creating new soil and rejuvenating soil health by: minimizing the loss of topsoil, retaining more carbon than is depleted, boosting biodiversity, and maintaining proper water and nutrient cycling. This has many benefits, such as: soil sequestration of carbon in response to a growing threat of climate change, a reduced risk of soil erosion, and increased overall soil resilience.

<span class="mw-page-title-main">Bokashi (horticulture)</span> Food waste processing technique involving fermentation

Bokashi is a process that converts food waste and similar organic matter into a soil amendment which adds nutrients and improves soil texture. It differs from traditional composting methods in several respects. The most important are:

<span class="mw-page-title-main">Digeponics</span>

Digeponics (pronounced die-jeh-ponics, as in digestion) is a method of agriculture which integrates the products of anaerobic digestion, including CO2 and digestate, with greenhouse cultivation of vegetables.

<span class="mw-page-title-main">Agriculture in California</span> Major industry of California

Agriculture is a significant sector in California's economy, producing nearly US$50 billion in revenue in 2018. There are more than 400 commodity crops grown across California, including a significant portion of all fruits, vegetables, and nuts in the United States. In 2017, there were 77,100 unique farms and ranches in the state, operating across 25.3 million acres of land. The average farm size was 328 acres (133 ha), significantly less than the average farm size in the U.S. of 444 acres (180 ha).

<span class="mw-page-title-main">Strawberry cultivation in California</span>

Strawberries in the United States are almost entirely grown in California – 86% of fresh and 98% of frozen in 2017 – with Florida a distant second. Of that 30.0% was from Monterey, 28.6% from Ventura, 20.0% from Santa Barbara, 10.0% from San Luis Obispo, and 9.2% from Santa Cruz. The Watsonville/Salinas strawberry zone in Santa Cruz/Monterey, and the Oxnard zone in Ventura, contribute heavily to those concentrations.

<span class="mw-page-title-main">Treatments in California agriculture</span>

Pesticide applications are regulated by the California Department of Pesticide Regulation.

References

  1. Stapleton, James J.; Elmore, Clyde L.; DeVay, James E. (2000-11-01). "Solarization and biofumigation help disinfest soil". California Agriculture. 54 (6): 42–45. doi: 10.3733/ca.v054n06p42 . ISSN   0008-0845.
  2. Simmons, Christopher W.; Guo, Hongyun; Claypool, Joshua T.; Marshall, Megan N.; Perano, Kristen M.; Stapleton, James J.; VanderGheynst, Jean S. (May 2013). "Managing compost stability and amendment to soil to enhance soil heating during soil solarization". Waste Management. 33 (5): 1090–1096. doi:10.1016/j.wasman.2013.01.015. PMID   23422041.
  3. Chamorro, M.; Miranda, L.; Domínguez, P.; Medina, J. J.; Soria, C.; Romero, F.; López Aranda, J. M.; De los Santos, B. (January 2015). "Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry". Crop Protection. 67: 279–286. doi:10.1016/j.cropro.2014.10.021.
  4. Chamorro, M.; Domínguez, P.; Medina, J. J.; Miranda, L.; Soria, C.; Romero, F.; López Aranda, J. M.; Daugovish, O.; Mertely, J. (2015-08-31). "Assessment of chemical and biosolarization treatments for the control of Macrophomina phaseolina in strawberries". Scientia Horticulturae. 192: 361–368. doi:10.1016/j.scienta.2015.03.029. S2CID   82769506.
  5. "Advances in Biosolarization Technology to Improve Soil Health and Organic Control of Soilborne Pests". Proceedings of the Organic Agricultural Research Symposium, 2016. James J. Stapleton , Ruth M. Dahlquist-Willard, Yigal Achmon, Megan N. Marshall, Jean S. VanderGheynst, and Christopher W. Simmons. available at: http://eorganic.info/sites/eorganic.info/files/u27/1.1.2-Stapleton-Biosolarization-Final.pdf
  6. Achmon, Yigal; Fernández‐Bayo, Jesús D.; Hernandez, Katie; McCurry, Dlinka G.; Harrold, Duff R.; Su, Joey; Dahlquist‐Willard, Ruth M.; Stapleton, James J.; VanderGheynst, Jean S. (2017-05-01). "Weed seed inactivation in soil mesocosms via biosolarization with mature compost and tomato processing waste amendments". Pest Management Science. 73 (5): 862–873. doi: 10.1002/ps.4354 . ISSN   1526-4998. PMID   27391139.
  7. Achmon, Yigal; Harrold, Duff R.; Claypool, Joshua T.; Stapleton, James J.; Vandergheynst, Jean S.; Simmons, Christopher W. (2016-02-01). "Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization". Waste Management. 48: 156–164. doi: 10.1016/j.wasman.2015.10.022 . ISSN   0956-053X. PMID   26525530.