Birch's theorem

Last updated

In mathematics, Birch's theorem, [1] named for Bryan John Birch, is a statement about the representability of zero by odd degree forms.

Contents

Statement of Birch's theorem

Let K be an algebraic number field, k, l and n be natural numbers, r1, ..., rk be odd natural numbers, and f1, ..., fk be homogeneous polynomials with coefficients in K of degrees r1, ..., rk respectively in n variables. Then there exists a number ψ(r1, ..., rk, l, K) such that if

then there exists an l-dimensional vector subspace V of Kn such that

Remarks

The proof of the theorem is by induction over the maximal degree of the forms f1, ..., fk. Essential to the proof is a special case, which can be proved by an application of the Hardy–Littlewood circle method, of the theorem which states that if n is sufficiently large and r is odd, then the equation

has a solution in integers x1, ..., xn, not all of which are 0.

The restriction to odd r is necessary, since even degree forms, such as positive definite quadratic forms, may take the value 0 only at the origin.

Related Research Articles

Diophantine equation Polynomial equation whose integer solutions are sought

In mathematics, a Diophantine equation is a polynomial equation, usually involving two or more unknowns, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.

The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero.

Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry, a branch of mathematics. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert who proved the Nullstellensatz and several other important related theorems named after him.

Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. It is named after Étienne Bézout.

The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space H. It is named after V. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung".

In mathematics, a quadratic form is a polynomial with terms all of degree two. For example,

In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a Z2-grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. In most of these theories, the even elements of the superalgebra correspond to bosons and odd elements to fermions.

Lindemann–Weierstrass theorem On algebraic independence of exponentials of linearly independent algebraic numbers over Q

In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following.

Polynomial ring Algebraic structure

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel-Choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.

In mathematics, a homogeneous function is one with multiplicative scaling behaviour: if all its arguments are multiplied by a factor, then its value is multiplied by some power of this factor.

Dirichlet distribution Probability distribution

In probability and statistics, the Dirichlet distribution, often denoted , is a family of continuous multivariate probability distributions parameterized by a vector of positive reals. It is a multivariate generalization of the beta distribution, hence its alternative name of multivariate beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution.

In mathematics, Hilbert's syzygy theorem is one of the three fundamental theorems about polynomial rings over fields, first proved by David Hilbert in 1890, which were introduced for solving important open questions in invariant theory, and are at the basis of modern algebraic geometry. The two other theorems are Hilbert's basis theorem that asserts that all ideals of polynomial rings over a field are finitely generated, and Hilbert's Nullstellensatz, which establishes a bijective correspondence between affine algebraic varieties and prime ideals of polynomial rings.

In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary symmetric polynomials. That is, any symmetric polynomial P is given by an expression involving only additions and multiplication of constants and elementary symmetric polynomials. There is one elementary symmetric polynomial of degree d in n variables for each nonnegative integer dn, and it is formed by adding together all distinct products of d distinct variables.

In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients, which is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the eliminant.

The following are important identities involving derivatives and integrals in vector calculus.

In mathematics, Brauer's theorem, named for Richard Brauer, is a result on the representability of 0 by forms over certain fields in sufficiently many variables.

In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra.

In algebraic geometry, the main theorem of elimination theory states that every projective scheme is proper. A version of this theorem predates the existence of scheme theory. It can be stated, proved, and applied in the following more classical setting. Let k be a field, denote by the n-dimensional projective space over k. The main theorem of elimination theory is the statement that for any n and any algebraic variety V defined over k, the projection map sends Zariski-closed subsets to Zariski-closed subsets.

In geometry, a valuation is a finitely additive function on a collection of admissible subsets of a fixed set with values in an abelian semigroup. For example, the Lebesgue measure is a valuation on finite unions of convex bodies of Euclidean space . Other examples of valuations on finite unions of convex bodies are the surface area, the mean width, and the Euler characteristic.

References

  1. Birch, B. J. (1957). "Homogeneous forms of odd degree in a large number of variables". Mathematika . 4: 102–105. doi:10.1112/S0025579300001145.