Blind equalization

Last updated

Blind equalization is a digital signal processing technique in which the transmitted signal is inferred (equalized) from the received signal, while making use only of the transmitted signal statistics. Hence, the use of the word blind in the name.

Contents

Blind equalization is essentially blind deconvolution applied to digital communications. Nonetheless, the emphasis in blind equalization is on online estimation of the equalization filter, which is the inverse of the channel impulse response, rather than the estimation of the channel impulse response itself. This is due to blind deconvolution common mode of usage in digital communications systems, as a means to extract the continuously transmitted signal from the received signal, with the channel impulse response being of secondary intrinsic importance.

The estimated equalizer is then convolved with the received signal to yield an estimation of the transmitted signal.

Problem statement

Noiseless model

Assuming a linear time invariant channel with impulse response , the noiseless model relates the received signal to the transmitted signal via

The blind equalization problem can now be formulated as follows; Given the received signal , find a filter , called an equalization filter, such that

where is an estimation of . The solution to the blind equalization problem is not unique. In fact, it may be determined only up to a signed scale factor and an arbitrary time delay. That is, if are estimations of the transmitted signal and channel impulse response, respectively, then give rise to the same received signal for any real scale factor and integral time delay . In fact, by symmetry, the roles of and are Interchangeable.

Noisy model

In the noisy model, an additional term, , representing additive noise, is included. The model is therefore

Algorithms

Many algorithms for the solution of the blind equalization problem have been suggested over the years. However, as one usually has access to only a finite number of samples from the received signal , further restrictions must be imposed over the above models to render the blind equalization problem tractable. One such assumption, common to all algorithms described below is to assume that the channel has finite impulse response, , where is an arbitrary natural number.

This assumption may be justified on physical grounds, since the energy of any real signal must be finite, and therefore its impulse response must tend to zero. Thus it may be assumed that all coefficients beyond a certain point are negligibly small.

Minimum phase

If the channel impulse response is assumed to be minimum phase, the problem becomes trivial.

Bussgang methods

Bussgang methods make use of the Least mean squares filter algorithm

with

where is an appropriate positive adaptation step and is a suitable nonlinear function.


Polyspectra techniques

Polyspectra techniques utilize higher order statistics in order to compute the equalizer.

See also

Related Research Articles

Convolution mathematical operation

In mathematics convolution is a mathematical operation on two functions that produces a third function expressing how the shape of one is modified by the other. The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reversed and shifted.

Wavelet function for integral Fourier-like transform

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases, and then decreases back to zero. It can typically be visualized as a "brief oscillation" like one recorded by a seismograph or heart monitor. Generally, wavelets are intentionally crafted to have specific properties that make them useful for signal processing. Using a "reverse, shift, multiply and integrate" technique called convolution, wavelets can be combined with known portions of a damaged signal to extract information from the unknown portions.

Filter design is the process of designing a signal processing filter that satisfies a set of requirements, some of which are contradictory. The purpose is to find a realization of the filter that meets each of the requirements to a sufficient degree to make it useful.

Kalman filter algorithm

In statistics and control theory, Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, containing statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The filter is named after Rudolf E. Kálmán, one of the primary developers of its theory.

In mathematics, deconvolution is an algorithm-based process used to reverse the effects of convolution on recorded data. The concept of deconvolution is widely used in the techniques of signal processing and image processing. Because these techniques are in turn widely used in many scientific and engineering disciplines, deconvolution finds many applications.

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely.

Amplitude-shift keying (ASK) is a form of amplitude modulation that represents digital data as variations in the amplitude of a carrier wave. In an ASK system, the binary symbol 1 is represented by transmitting a fixed-amplitude carrier wave and fixed frequency for a bit duration of T seconds. If the signal value is 1 then the carrier signal will be transmitted; otherwise, a signal value of 0 will be transmitted.

In signal processing, a matched filter is obtained by correlating a known delayed signal, or template, with an unknown signal to detect the presence of the template in the unknown signal. This is equivalent to convolving the unknown signal with a conjugated time-reversed version of the template. The matched filter is the optimal linear filter for maximizing the signal-to-noise ratio (SNR) in the presence of additive stochastic noise.

In signal processing, specifically control theory, bounded-input, bounded-output (BIBO) stability is a form of stability for linear signals and systems that take inputs. If a system is BIBO stable, then the output will be bounded for every input to the system that is bounded.

In signal processing, the Wiener filter is a filter used to produce an estimate of a desired or target random process by linear time-invariant (LTI) filtering of an observed noisy process, assuming known stationary signal and noise spectra, and additive noise. The Wiener filter minimizes the mean square error between the estimated random process and the desired process.

Blind deconvolution

In electrical engineering and applied mathematics, blind deconvolution is deconvolution without explicit knowledge of the impulse response function used in the convolution. This is usually achieved by making appropriate assumptions of the input to estimate the impulse response by analyzing the output. Blind deconvolution is not solvable without making assumptions on input and impulse response. Most of the algorithms to solve this problem are based on assumption that both input and impulse response live in respective known subspaces. However, blind deconvolution remains a very challenging non-convex optimization problem even with this assumption.

Nyquist ISI criterion pungTH

In communications, the Nyquist ISI criterion describes the conditions which, when satisfied by a communication channel, result in no intersymbol interference or ISI. It provides a method for constructing band-limited functions to overcome the effects of intersymbol interference.

In wireless communications, channel state information (CSI) refers to known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of, for example, scattering, fading, and power decay with distance. The method is called Channel estimation. The CSI makes it possible to adapt transmissions to current channel conditions, which is crucial for achieving reliable communication with high data rates in multiantenna systems.

Space-time adaptive processing

Space-time adaptive processing (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection. Radar signal processing benefits from STAP in areas where interference is a problem. Through careful application of STAP, it is possible to achieve order-of-magnitude sensitivity improvements in target detection.

Zero Forcing Equalizer refers to a form of linear equalization algorithm used in communication systems which applies the inverse of the frequency response of the channel. This form of equalizer was first proposed by Robert Lucky.

In statistical signal processing, the goal of spectral density estimation (SDE) is to estimate the spectral density of a random signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.

The Least mean squares filter solution converges to the Wiener filter solution, assuming that the unknown system is LTI and the noise is stationary. Both filters can be used to identify the impulse response of an unknown system, knowing only the original input signal and the output of the unknown system. By relaxing the error criterion to reduce current sample error instead of minimizing the total error over all of n, the LMS algorithm can be derived from the Wiener filter.

In digital communications, a turbo equalizer is a type of receiver used to receive a message corrupted by a communication channel with intersymbol interference (ISI). It approaches the performance of a maximum a posteriori (MAP) receiver via iterative message passing between a soft-in soft-out (SISO) equalizer and a SISO decoder. It is related to turbo codes in that a turbo equalizer may be considered a type of iterative decoder if the channel is viewed as a non-redundant convolutional code. The turbo equalizer is different from classic a turbo-like code, however, in that the 'channel code' adds no redundancy and therefore can only be used to remove non-gaussian noise.

In multidimensional signal processing, Multidimensional signal restoration refers to the problem of estimating the original input signal from observations of the distorted or noise contaminated version of the original signal using some prior information about the input signal and /or the distortion process. Multidimensional signal processing systems such as audio, image and video processing systems often receive as input, signals that undergo distortions like blurring, band-limiting etc. during signal acquisition or transmission and it may be vital to recover the original signal for further filtering. Multidimensional signal restoration is an inverse problem, where only the distorted signal is observed and some information about the distortion process and/or input signal properties is known. A general class of iterative methods have been developed for the multidimensional restoration problem with successful applications to multidimensional deconvolution, signal extrapolation and denoising.

XPIC

XPIC, or cross-polarization interference cancelling technology, is an algorithm to suppress mutual interference between two received streams in a Polarization-division multiplexing communication system.

References

[1] C. RICHARD JOHNSON, JR., et. el., "Blind Equalization Using the Constant Modulus Criterion: A Review", PROCEEDINGS OF THE IEEE, VOL. 86, NO. 10, OCTOBER 1998.