Blum axioms

Last updated

In computational complexity theory the Blum axioms or Blum complexity axioms are axioms that specify desirable properties of complexity measures on the set of computable functions. The axioms were first defined by Manuel Blum in 1967. [1]

Contents

Importantly, Blum's speedup theorem and the Gap theorem hold for any complexity measure satisfying these axioms. The most well-known measures satisfying these axioms are those of time (i.e., running time) and space (i.e., memory usage).

Definitions

A Blum complexity measure is a pair with a numbering of the partial computable functions and a computable function

which satisfies the following Blum axioms. We write for the i-th partial computable function under the Gödel numbering , and for the partial computable function .

Examples

Complexity classes

For a total computable function complexity classes of computable functions can be defined as

is the set of all computable functions with a complexity less than . is the set of all boolean-valued functions with a complexity less than . If we consider those functions as indicator functions on sets, can be thought of as a complexity class of sets.

Related Research Articles

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .

In computability theory, Kleene's recursion theorems are a pair of fundamental results about the application of computable functions to their own descriptions. The theorems were first proved by Stephen Kleene in 1938 and appear in his 1952 book Introduction to Metamathematics. A related theorem, which constructs fixed points of a computable function, is known as Rogers's theorem and is due to Hartley Rogers, Jr.

In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation, and can loosely be thought of as using the chain rule "backwards."

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem. In one dimension, it is equivalent to the fundamental theorem of calculus. In three dimensions, it is equivalent to the divergence theorem.

In computability theory, a set S of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if:

In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the vector field under the line integral being conservative. A conservative vector field is also irrotational; in three dimensions, this means that it has vanishing curl. An irrotational vector field is necessarily conservative provided that the domain is simply connected.

In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

In mathematics, particularly in functional analysis, a projection-valued measure is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-valued measure (PVM) is formally similar to a real-valued measure, except that its values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

In computability theory the S m
n
 
theorem
, written also as "smn-theorem" or "s-m-n theorem" is a basic result about programming languages. It was first proved by Stephen Cole Kleene (1943). The name S m
n
 
comes from the occurrence of an S with subscript n and superscript m in the original formulation of the theorem.

In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.

In computability theory, productive sets and creative sets are types of sets of natural numbers that have important applications in mathematical logic. They are a standard topic in mathematical logic textbooks such as Soare (1987) and Rogers (1987).

In computability theory the Myhill isomorphism theorem, named after John Myhill, provides a characterization for two numberings to induce the same notion of computability on a set. It is reminiscent of the Schröder-Bernstein theorem in set theory and has been called a constructive version of it.

In computational complexity theory, Blum's speedup theorem, first stated by Manuel Blum in 1967, is a fundamental theorem about the complexity of computable functions.

In computational complexity theory, the compression theorem is an important theorem about the complexity of computable functions.

The following are important identities involving derivatives and integrals in vector calculus.

In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. The general task of pattern analysis is to find and study general types of relations in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products. The feature map in kernel machines is infinite dimensional but only requires a finite dimensional matrix from user-input according to the Representer theorem. Kernel machines are slow to compute for datasets larger than a couple of thousand examples without parallel processing.

In constructive mathematics, Church's thesis is the principle stating that all total functions are computable functions.

In computability theory, index sets describe classes of computable functions; specifically, they give all indices of functions in a certain class, according to a fixed Gödel numbering of partial computable functions.

References

  1. Blum, Manuel (1967). "A Machine-Independent Theory of the Complexity of Recursive Functions" (PDF). Journal of the ACM . 14 (2): 322–336. doi:10.1145/321386.321395. S2CID   15710280.