Bodhraj Acharya

Last updated
Bodhraj Acharya
Bodhraj Acharya.jpg
Born
Nationality American
Scientific career
FieldsLaboratory Medicine, Molecular Biology
Institutions University of Maryland
Doctoral advisor Prof Moudgil Kamal (Post-doctoral) Prof. Byung-Heon Lee

Bodhraj Acharya is a Nepalese-born American professional, working in the field of laboratory medicine, Cell Biology and chemistry. [1] He has received many honors, grants and travel fellowships in United States and other countries. [2] He has published patents, abstracts and articles in the field. He had worked previously as a clinical laboratory technical director in various hospitals. He also work as Clinical Laboratory expert for various non-profit organizations.

Contents

Prizes and honours

Professional membership

Patents

Book Chapter

Publication

Related Research Articles

<span class="mw-page-title-main">Interleukin 6</span> Cytokine protein

Interleukin 6 (IL-6) is an interleukin that acts as both a pro-inflammatory cytokine and an anti-inflammatory myokine. In humans, it is encoded by the IL6 gene.

<span class="mw-page-title-main">Interleukin 1-alpha</span> Protein-coding gene in the species Homo sapiens

Interleukin-1 alpha also known as hematopoietin 1 is a cytokine of the interleukin 1 family that in humans is encoded by the IL1A gene. In general, Interleukin 1 is responsible for the production of inflammation, as well as the promotion of fever and sepsis. IL-1α inhibitors are being developed to interrupt those processes and treat diseases.

Interleukin 27 (IL-27) is a member of the IL-12 cytokine family. It is a heterodimeric cytokine that is encoded by two distinct genes, Epstein-Barr virus-induced gene 3 (EBI3) and IL-27p28. IL-27 is expressed by antigen presenting cells and interacts with a specific cell-surface receptor complex known as IL-27 receptor (IL-27R). This receptor consists of two proteins, IL-27Rɑ and gp130. IL-27 induces differentiation of the diverse populations of T cells in the immune system and also upregulates IL-10.

<span class="mw-page-title-main">Interleukin 20</span> Protein-coding gene in the species Homo sapiens

Interleukin 20 (IL20) is a protein that is in humans encoded by the IL20 gene which is located in close proximity to the IL-10 gene on the 1q32 chromosome. IL-20 is a part of an IL-20 subfamily which is a part of a larger IL-10 family.

<span class="mw-page-title-main">Interleukin 17</span> Group of proteins

Interleukin 17 family is a family of pro-inflammatory cystine knot cytokines. They are produced by a group of T helper cell known as T helper 17 cell in response to their stimulation with IL-23. Originally, Th17 was identified in 1993 by Rouvier et al. who isolated IL17A transcript from a rodent T-cell hybridoma. The protein encoded by IL17A is a founding member of IL-17 family. IL17A protein exhibits a high homology with a viral IL-17-like protein encoded in the genome of T-lymphotropic rhadinovirus Herpesvirus saimiri. In rodents, IL-17A is often referred to as CTLA8.

<span class="mw-page-title-main">CXCL5</span> Mammalian protein found in Homo sapiens

C-X-C motif chemokine 5 is a protein that in humans is encoded by the CXCL5 gene.

<span class="mw-page-title-main">B-cell activating factor</span> Mammalian protein found in Homo sapiens

B-cell activating factor (BAFF) also known as tumor necrosis factor ligand superfamily member 13B and CD257 among other names, is a protein that in humans is encoded by the TNFSF13B gene. BAFF is also known as B Lymphocyte Stimulator (BLyS) and TNF- and APOL-related leukocyte expressed ligand (TALL-1) and the Dendritic cell-derived TNF-like molecule.

<span class="mw-page-title-main">CD137</span> Member of the tumor necrosis factor (TNF) receptor family

CD137, a member of the tumor necrosis factor (TNF) receptor family, is a type 1 transmembrane protein, expressed on surfaces of leukocytes and non-immune cells. Its alternative names are tumor necrosis factor receptor superfamily member 9 (TNFRSF9), 4-1BB, and induced by lymphocyte activation (ILA). It is of interest to immunologists as a co-stimulatory immune checkpoint molecule, and as a potential target in cancer immunotherapy.

<span class="mw-page-title-main">Toll-like receptor 5</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 5, also known as TLR5, is a protein which in humans is encoded by the TLR5 gene. It is a member of the toll-like receptor (TLR) family. TLR5 is known to recognize bacterial flagellin from invading mobile bacteria. It has been shown to be involved in the onset of many diseases, which includes Inflammatory bowel disease. Recent studies have also shown that malfunctioning of TLR5 is likely related to rheumatoid arthritis, osteoclastogenesis, and bone loss. Abnormal TLR5 functioning is related to the onset of gastric, cervical, endometrial and ovarian cancers.

<span class="mw-page-title-main">TBX21</span> Protein-coding gene in the species Homo sapiens

T-box transcription factor TBX21, also called T-bet is a protein that in humans is encoded by the TBX21 gene. Though being for long thought of only as a master regulator of type 1 immune response, T-bet has recently been shown to be implicated in development of various immune cell subsets and maintenance of mucosal homeostasis.

<span class="mw-page-title-main">PDCD1LG2</span> Protein-coding gene in the species Homo sapiens

Programmed cell death 1 ligand 2 is a protein that in humans is encoded by the PDCD1LG2 gene. PDCD1LG2 has also been designated as CD273. PDCD1LG2 is an immune checkpoint receptor ligand which plays a role in negative regulation of the adaptive immune response. PD-L2 is one of two known ligands for Programmed cell death protein 1 (PD-1).

<span class="mw-page-title-main">Thymic stromal lymphopoietin</span> Protein-coding gene in the species Homo sapiens

Thymic stromal lymphopoietin (TSLP) is a protein belonging to the cytokine family. It is known to play an important role in the maturation of T cell populations through activation of antigen-presenting cells.

<span class="mw-page-title-main">Peptidoglycan recognition protein 1</span> Protein-coding gene in the species Homo sapiens

Peptidoglycan recognition protein 1, PGLYRP1, also known as TAG7, is an antibacterial and pro-inflammatory innate immunity protein that in humans is encoded by the PGLYRP1 gene.

<span class="mw-page-title-main">TNFRSF18</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as glucocorticoid-induced TNFR-related protein (GITR) or CD357. GITR is encoded and tnfrsf18 gene at chromosome 4 in mice. GITR is type I transmembrane protein and is described in 4 different isoforms. GITR human orthologue, also called activation-inducible TNFR family receptor (AITR), is encoded by the TNFRSF18 gene at chromosome 1.

<span class="mw-page-title-main">Interleukin-23 receptor</span> Protein-coding gene in the species Homo sapiens

The interleukin-23 receptor is a type I cytokine receptor. It is encoded in human by the IL23R gene. In complex with the interleukin-12 receptor β1 subunit (IL-12Rβ1), it is activated by the cytokine interleukin 23 (IL-23). The IL23R mRNA is 2.8 kilobases in length and includes 12 exons. The translated protein contains 629 amino acids; it is a type I penetrating protein and includes a signal peptide, an N-terminal fibronectin III-like domain and an intracellular part that contains three potential tyrosine phosphorylation domains. There are 24 IL23R splice variants in mitogen-activated lymphocytes. IL23R includes some single-nucleotide polymorphisms in the region encoding the domain that binds IL-23, which may lead to differences between people in Th17 activation. There is also a variant of IL-23R that consists of just the extracellular part and is known as soluble IL-23R. This form can compete with the membrane-bound form to bind IL-23, modulating the Th17 immune response and regulation of inflammation and immune function.

<span class="mw-page-title-main">IL17A</span> Protein-coding gene in the species Homo sapiens

Interleukin-17A is a protein that in humans is encoded by the IL17A gene. In rodents, IL-17A used to be referred to as CTLA8, after the similarity with a viral gene.

<span class="mw-page-title-main">Anti–citrullinated protein antibody</span> Autoantibodies

Anti-citrullinated protein antibodies (ACPAs) are autoantibodies that are directed against peptides and proteins that are citrullinated. They are present in the majority of patients with rheumatoid arthritis. Clinically, cyclic citrullinated peptides (CCP) are frequently used to detect these antibodies in patient serum or plasma.

A Janus kinase inhibitor, also known as JAK inhibitor or jakinib, is a type of immune modulating medication, which inhibits the activity of one or more of the Janus kinase family of enzymes, thereby interfering with the JAK-STAT signaling pathway in lymphocytes.

<span class="mw-page-title-main">Celastrol</span> Chemical compound

Celastrol (tripterine) is a chemical compound isolated from the root extracts of Tripterygium wilfordii and Tripterygium regelii. Celastrol is a pentacyclic nortriterpen quinone and belongs to the family of quinone methides. In mice, celastrol is an NR4A1 agonist that alleviates inflammation and induces autophagy. Also in mice, celastrol increase expression of IL1R1, which is the receptor for the cytokine interleukin-1 (IL-1). IL1R1 knock-out mice exposed to celastrol exhibit no leptin-sensitizing or anti-obesity effect.

Lee Byung-heon (Korean: 이병헌) is a professor of biochemistry and cell biology in the school of medicine at Kyungpook National University (KNU), South Korea. He received his M.D. license from Korean Medical Association in 1989. He received his B.S. from the school of medicine, KNU, in 1989, and his M.S. and Ph.D. in biochemistry from KNU in 1991 and 1995. He was an assistant professor in the school of medicine at Dongguk University in 1996–2001 and a visiting investigator in the Sanford-Burnham Medical Research Institute, La Jolla, United States, in 2001–2003. He joined KNU in 2003. He is currently a member of Korean Society for Biochemistry and Molecular Biology, the American Association for Cancer Research, and the American Society of Molecular Imaging. His main research interest is “discovery of tissue-specific homing peptides using phage display and their applications to molecular imaging and targeted therapy”. He is currently carrying out projects for the identification of homing peptides to tumor and atherosclerotic plaque and of phosphatidylserine- and blood clotting factor XIIIa-specific peptide ligands. He has published over 30 peer-reviewed papers, book chapters, and review articles. He has also filed several patents.

References

  1. "Google Scholar Profile Acharya B." Retrieved 2015-01-07.
  2. Bruns, D. E. (2005). "The Clinical Chemist". Clinical Chemistry. 51 (4): 799. doi: 10.1373/clinchem.2005.050443 .
  3. "2005 Gallwas Recipients". Aacc.org. Retrieved 2012-11-01.
  4. "2005 International travel grant winners. - Free Online Library". Thefreelibrary.com. 2005-04-01. Retrieved 2012-11-01.