BookCorpus (also sometimes referred to as the Toronto Book Corpus) is a dataset consisting of the text of around 7,000 self-published books scraped from the indie ebook distribution website Smashwords. [1] It was the main corpus used to train the initial GPT model by OpenAI, [2] and has been used as training data for other early large language models including Google's BERT. [3] The dataset consists of around 985 million words, and the books that comprise it span a range of genres, including romance, science fiction, and fantasy. [3]
The corpus was introduced in a 2015 paper by researchers from the University of Toronto and MIT titled "Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books". The authors described it as consisting of "free books written by yet unpublished authors," yet this is factually incorrect. These books were published by self-published ("indie") authors who priced them at free; the books were downloaded without the consent or permission of Smashwords or Smashwords authors and in violation of the Smashwords Terms of Service. [4] The dataset was initially hosted on a University of Toronto webpage. [4] An official version of the original dataset is no longer publicly available, though at least one substitute, BookCorpusOpen, has been created. [1] Though not documented in the original 2015 paper, the site from which the corpus's books were scraped is now known to be Smashwords. [4] [1]
A language model is a probabilistic model of a natural language. In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.
Maluuba is a Canadian technology company conducting research in artificial intelligence and language understanding. Founded in 2011, the company was acquired by Microsoft in 2017.
In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis. Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. Word embeddings can be obtained using language modeling and feature learning techniques, where words or phrases from the vocabulary are mapped to vectors of real numbers.
Word2vec is a technique in natural language processing (NLP) for obtaining vector representations of words. These vectors capture information about the meaning of the word based on the surrounding words. The word2vec algorithm estimates these representations by modeling text in a large corpus. Once trained, such a model can detect synonymous words or suggest additional words for a partial sentence. Word2vec was developed by Tomáš Mikolov and colleagues at Google and published in 2013.
Artificial intelligence is used in Wikipedia and other Wikimedia projects for the purpose of developing those projects. Human and bot interaction in Wikimedia projects is routine and iterative.
A transformer is a deep learning architecture developed by researchers at Google and based on the multi-head attention mechanism, proposed in the 2017 paper "Attention Is All You Need". Text is converted to numerical representations called tokens, and each token is converted into a vector via lookup from a word embedding table. At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism, allowing the signal for key tokens to be amplified and less important tokens to be diminished.
Bidirectional encoder representations from transformers (BERT) is a language model introduced in October 2018 by researchers at Google. It learns to represent text as a sequence of vectors using self-supervised learning. It uses the encoder-only transformer architecture. It is notable for its dramatic improvement over previous state-of-the-art models, and as an early example of a large language model. As of 2020, BERT is a ubiquitous baseline in natural language processing (NLP) experiments.
Generative Pre-trained Transformer 3 (GPT-3) is a large language model released by OpenAI in 2020.
ELMo is a word embedding method for representing a sequence of words as a corresponding sequence of vectors. It was created by researchers at the Allen Institute for Artificial Intelligence, and University of Washington and first released in February, 2018. It is a bidirectional LSTM which takes character-level as inputs and produces word-level embeddings, trained on a corpus of about 30 million sentences and 1 billion words.
Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on a dataset of 8 million web pages. It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019.
Wu Dao is a multimodal artificial intelligence developed by the Beijing Academy of Artificial Intelligence (BAAI). Wu Dao 1.0 was first announced on January 11, 2021; an improved version, Wu Dao 2.0, was announced on May 31. It has been compared to GPT-3, and is built on a similar architecture; in comparison, GPT-3 has 175 billion parameters — variables and inputs within the machine learning model — while Wu Dao has 1.75 trillion parameters. Wu Dao was trained on 4.9 terabytes of images and texts, while GPT-3 was trained on 45 terabytes of text data. Yet, a growing body of work highlights the importance of increasing both data and parameters. The chairman of BAAI said that Wu Dao was an attempt to "create the biggest, most powerful AI model possible". Wu Dao 2.0, was called "the biggest language A.I. system yet". It was interpreted by commenters as an attempt to "compete with the United States".. Notably, the type of architecture used for Wu Dao 2.0 is a mixture-of-experts (MoE) model, unlike GPT-3, which is a "dense" model: while MoE models require much less computational power to train than dense models with the same numbers of parameters, trillion-parameter MoE models have shown comparable performance to models that are hundreds of times smaller.
Generative Pre-trained Transformer 1 (GPT-1) was the first of OpenAI's large language models following Google's invention of the transformer architecture in 2017. In June 2018, OpenAI released a paper entitled "Improving Language Understanding by Generative Pre-Training", in which they introduced that initial model along with the general concept of a generative pre-trained transformer.
A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.
LAION is a German non-profit which makes open-sourced artificial intelligence models and datasets. It is best known for releasing a number of large datasets of images and captions scraped from the web which have been used to train a number of high-profile text-to-image models, including Stable Diffusion and Imagen.
A generative pre-trained transformer (GPT) is a type of large language model (LLM) and a prominent framework for generative artificial intelligence. It is an artificial neural network that is used in natural language processing by machines. It is based on the transformer deep learning architecture, pre-trained on large data sets of unlabeled text, and able to generate novel human-like content. As of 2023, most LLMs had these characteristics and are sometimes referred to broadly as GPTs.
A large language model (LLM) is a type of computational model designed for natural language processing tasks such as language generation. As language models, LLMs acquire these abilities by learning statistical relationships from vast amounts of text during a self-supervised and semi-supervised training process.
In machine learning, the term stochastic parrot is a metaphor to describe the theory that large language models, though able to generate plausible language, do not understand the meaning of the language they process. The term was coined by Emily M. Bender in the 2021 artificial intelligence research paper "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? 🦜" by Bender, Timnit Gebru, Angelina McMillan-Major, and Margaret Mitchell.
Ashish Vaswani is a computer scientist working in deep learning, who is known for his significant contributions to the field of artificial intelligence (AI) and natural language processing (NLP). He is one of the co-authors of the seminal paper "Attention Is All You Need" which introduced the Transformer model, a novel architecture that uses a self-attention mechanism and has since become foundational to many state-of-the-art models in NLP. Transformer architecture is the core of language models that power applications such as ChatGPT. He was a co-founder of Adept AI Labs and a former staff research scientist at Google Brain.
"Attention Is All You Need" is a 2017 landmark research paper in machine learning authored by eight scientists working at Google. The paper introduced a new deep learning architecture known as the transformer, based on the attention mechanism proposed in 2014 by Bahdanau et al. It is considered a foundational paper in modern artificial intelligence, as the transformer approach has become the main architecture of large language models like those based on GPT. At the time, the focus of the research was on improving Seq2seq techniques for machine translation, but the authors go further in the paper, foreseeing the technique's potential for other tasks like question answering and what is now known as multimodal Generative AI.
T5 is a series of large language models developed by Google AI introduced in 2019. Like the original Transformer model, T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.