Boundary conditions in fluid dynamics

Last updated

Boundary conditions in fluid dynamics are the set of constraints to boundary value problems in computational fluid dynamics. These boundary conditions include inlet boundary conditions, outlet boundary conditions, wall boundary conditions, constant pressure boundary conditions, axisymmetric boundary conditions, symmetric boundary conditions, and periodic or cyclic boundary conditions.

Contents

Transient problems require one more thing i.e., initial conditions where initial values of flow variables are specified at nodes in the flow domain. [1] Various types of boundary conditions are used in CFD for different conditions and purposes and are discussed as follows.

Inlet boundary conditions

Showing inlet flow velocity in a pipe Inlet Boundary Condition.jpg
Showing inlet flow velocity in a pipe

In inlet boundary conditions, the distribution of all flow variables needs to be specified at inlet boundaries, mainly flow velocity. [1] This type of boundary conditions are common and specified mostly where inlet flow velocity is known.

Outlet boundary condition

Showing outlet flow velocity in a pipe Outlet Boundary Condition.jpg
Showing outlet flow velocity in a pipe

In outlet boundary conditions, the distribution of all flow variables needs to be specified, mainly flow velocity. This can be thought as a conjunction to inlet boundary condition. This type of boundary conditions is common and specified mostly where outlet velocity is known. [1] The flow attains a fully developed state where no change occurs in the flow direction when the outlet is selected far away from the geometrical disturbances. In such region, an outlet could be outlined and the gradient of all variables could be equated to zero in the flow direction except pressure.

No-slip boundary condition

Showing wall boundary condition Wall Boundary Condition.jpg
Showing wall boundary condition

The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1] It may run counter to intuition, but the no-slip condition has been firmly established in both experiment and theory, though only after decades of controversy and debate. [2]

Heat transfer through the wall can be specified or if the walls are considered adiabatic, then heat transfer across the wall is set to zero.

Constant pressure boundary conditions

Showing constant pressure boundary condition Pressure Boundary Condition.jpg
Showing constant pressure boundary condition

This type of boundary condition is used where boundary values of pressure are known and the exact details of the flow distribution are unknown. This includes pressure inlet and outlet conditions mainly. Typical examples that utilize this boundary condition include buoyancy driven flows, internal flows with multiple outlets, free surface flows and external flows around objects. [1] An example is flow outlet into atmosphere where pressure is atmospheric.

Axisymmetric boundary conditions

Showing axisymmetric boundary condition Axisymmetric Boundary Condition.jpg
Showing axisymmetric boundary condition

In this boundary condition, the model is axisymmetric with respect to the main axis such that at a particular r = R, all θs and each z = Z-slice, each flow variable has the same value. [3] A good example is the flow in a circular pipe where the flow and pipe axes coincide.


Symmetric boundary condition

Showing symmetric boundary condition Symmetric Boundary Condition.jpg
Showing symmetric boundary condition

In this boundary condition, it is assumed that on the two sides of the boundary, same physical processes exist. [4] All the variables have same value and gradients at the same distance from the boundary. It acts as a mirror that reflects all the flow distribution to the other side. [5] The conditions at symmetric boundary are no flow across boundary and no scalar flux across boundary.

A good example is of a pipe flow with a symmetric obstacle in the flow. The obstacle divides the upper flow and lower flow as mirrored flow.

Periodic or cyclic boundary condition

A quarter showing cyclic boundary condition Cyclic-Pump Impeller.JPG
A quarter showing cyclic boundary condition

A periodic or cyclic boundary condition arises from a different type of symmetry in a problem. If a component has a repeated pattern in flow distribution more than twice, thus violating the mirror image requirements required for symmetric boundary condition. A good example would be swept vane pump (Fig.), [6] where the marked area is repeated four times in r-theta coordinates. The cyclic-symmetric areas should have the same flow variables and distribution and should satisfy that in every Z-slice. [1]

See also

Notes

  1. 1 2 3 4 5 6 Henk Kaarle Versteeg; Weeratunge Malalasekera (1995). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman Scientific & Technical. pp. 192–206. ISBN   0-582-21884-5.
  2. Prabhakara, Sandeep; Deshpande, M. D. (2004-04-01). "The no-slip boundary condition in fluid mechanics". Resonance. 9 (4): 50–60. doi:10.1007/BF02834856. ISSN   0973-712X. S2CID   124269972.
  3. "cyclic symmetric BCs" . Retrieved 2015-08-09.
  4. "cyclic symmetric BCs" . Retrieved 2013-10-10.
  5. "Symmetric boundary condition".
  6. "cyclic symmetric BCs" . Retrieved 2013-10-10.

Related Research Articles

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.

Compressible flow is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressible, flows are usually treated as being incompressible when the Mach number is smaller than 0.3. The study of compressible flow is relevant to high-speed aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields.

<span class="mw-page-title-main">Computational fluid dynamics</span> Analysis and solving of problems that involve fluid flows

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.

<span class="mw-page-title-main">Centrifugal compressor</span> Sub-class of dynamic axisymmetric work-absorbing turbomachinery

Centrifugal compressors, sometimes called impeller compressors or radial compressors, are a sub-class of dynamic axisymmetric work-absorbing turbomachinery.

<span class="mw-page-title-main">Axial compressor</span> Machine for continuous flow gas compression

An axial compressor is a gas compressor that can continuously pressurize gases. It is a rotating, airfoil-based compressor in which the gas or working fluid principally flows parallel to the axis of rotation, or axially. This differs from other rotating compressors such as centrifugal compressor, axi-centrifugal compressors and mixed-flow compressors where the fluid flow will include a "radial component" through the compressor.

In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between two surfaces, one of which is moving tangentially relative to the other. The relative motion of the surfaces imposes a shear stress on the fluid and induces flow. Depending on the definition of the term, there may also be an applied pressure gradient in the flow direction.

Fluid mechanics is the branch of physics concerned with the mechanics of fluids and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.

In fluid dynamics, the no-slip condition is a boundary condition which enforces that at a solid boundary, a viscous fluid attains zero bulk velocity. This boundary condition was first proposed by Osborne Reynolds, who observed this behaviour while performing his influential pipe flow experiments. The form of this boundary condition is an example of a Dirichlet boundary condition.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

<span class="mw-page-title-main">Prandtl–Meyer expansion fan</span> Phenomenon in fluid dynamics

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, a two-dimensional simple wave, is a centered expansion process that occurs when a supersonic flow turns around a convex corner. The fan consists of an infinite number of Mach waves, diverging from a sharp corner. When a flow turns around a smooth and circular corner, these waves can be extended backwards to meet at a point.

In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces.

Flow conditioning ensures that the "real world" environment closely resembles the "laboratory" environment for proper performance of inferential flowmeters like orifice, turbine, coriolis, ultrasonic etc.

<span class="mw-page-title-main">Boundary conditions in computational fluid dynamics</span>

Almost every computational fluid dynamics problem is defined under the limits of initial and boundary conditions. When constructing a staggered grid, it is common to implement boundary conditions by adding an extra node across the physical boundary. The nodes just outside the inlet of the system are used to assign the inlet conditions and the physical boundaries can coincide with the scalar control volume boundaries. This makes it possible to introduce the boundary conditions and achieve discrete equations for nodes near the boundaries with small modifications.

In turbomachinery, the slip factor is a measure of the fluid slip in the impeller of a compressor or a turbine, mostly a centrifugal machine. Fluid slip is the deviation in the angle at which the fluid leaves the impeller from the impeller's blade/vane angle. Being quite small in axial impellers, slip is a very important phenomenon in radial impellers and is useful in determining the accurate estimation of work input or the energy transfer between the impeller and the fluid, rise in pressure and the velocity triangles at the impeller exit.

In physics, a free surface flow is the surface of a fluid flowing that is subjected to both zero perpendicular normal stress and parallel shear stress. This can be the boundary between two homogeneous fluids, like water in an open container and the air in the Earth's atmosphere that form a boundary at the open face of the container.

In fluid dynamics Jeffery–Hamel flow is a flow created by a converging or diverging channel with a source or sink of fluid volume at the point of intersection of the two plane walls. It is named after George Barker Jeffery(1915) and Georg Hamel(1917), but it has subsequently been studied by many major scientists such as von Kármán and Levi-Civita, Walter Tollmien, F. Noether, W.R. Dean, Rosenhead, Landau, G.K. Batchelor etc. A complete set of solutions was described by Edward Fraenkel in 1962.

In fluid dynamics, a stagnation point flow refers to a fluid flow in the neighbourhood of a stagnation point or a stagnation line with which the stagnation point/line refers to a point/line where the velocity is zero in the inviscid approximation. The flow specifically considers a class of stagnation points known as saddle points wherein incoming streamlines gets deflected and directed outwards in a different direction; the streamline deflections are guided by separatrices. The flow in the neighborhood of the stagnation point or line can generally be described using potential flow theory, although viscous effects cannot be neglected if the stagnation point lies on a solid surface.

<span class="mw-page-title-main">Hemodynamics of the aorta</span> Study of the flow patterns and forces in the thoracic aorta

The hemodynamics of the aorta is an ongoing field of research in which the goal is to identify what flow patterns and subsequent forces occur within the thoracic aorta. These patterns and forces are used to identify the presence and severity of cardiovascular diseases such as aortic aneurysm and atherosclerosis. Some of the methods used to study the hemodynamics of aortic flow are patient scans, computational fluid dynamics models, and particle tracking velocimetry (PTV). The information gathered through these studies can be used for surgery planning and the development of implants. Greater understanding of this topic reduces mortality rates associated with cardiovascular disease.

References