Bounded quantification

Last updated

In type theory, bounded quantification (also bounded polymorphism or constrained genericity) refers to universal or existential quantifiers which are restricted ("bounded") to range only over the subtypes of a particular type. Bounded quantification is an interaction of parametric polymorphism with subtyping. Bounded quantification has traditionally been studied in the functional setting of System F<:, but is available in modern object-oriented languages supporting parametric polymorphism (generics) such as Java, C# and Scala.

Contents

Overview

The purpose of bounded quantification is to allow for polymorphic functions to depend on some specific behaviour of objects instead of type inheritance. It assumes a record-based model for object classes, where every class member is a record element and all class members are named functions. Object attributes are represented as functions that take no argument and return an object. The specific behaviour is then some function name along with the types of the arguments and the return type. Bounded quantification considers all objects with such a function. An example would be a polymorphic min function that considers all objects that are comparable to each other.[ citation needed ]

F-bounded quantification

F-bounded quantification or recursively bounded quantification, introduced in 1989, allows for more precise typing of functions that are applied on recursive types. A recursive type is one that includes a function that uses it as a type for some argument or its return value. [1]

Example

This kind of type constraint can be expressed in Java with a generic interface. The following example demonstrates how to describe types that can be compared to each other and use this as typing information in polymorphic functions. The Test.min function uses simple bounded quantification and does not ensure the objects are mutually comparable, in contrast with the Test.fMin function which uses F-bounded quantification.

In mathematical notation, the types of the two functions are

min: ∀ T, ∀ S ⊆ {compareTo: T → int}. S → S → S
fMin: ∀ T ⊆ Comparable[T]. T → T → T

where

Comparable[T] = {compareTo: T → int}
interfaceComparable<T>{intcompareTo(Tother);}publicclassIntegerimplementsComparable<Integer>{@OverridepublicintcompareTo(Integerother){// ...}}publicclassStringimplementsComparable<String>{@OverridepublicintcompareTo(Stringother){// ...}}publicclassTest{publicstaticvoidmain(String[]args){finalStringa=min("cat","dog");finalIntegerb=min(10,3);finalComparablec=min("cat",3);// Throws ClassCastException at runtimefinalStringstr=fMin("cat","dog");finalIntegeri=fMin(10,3);// final Object o = fMin("cat", 3); // Does not compile}publicstatic<SextendsComparable>Smin(Sa,Sb){if(a.compareTo(b)<=0){returna;}else{returnb;}}publicstatic<TextendsComparable<T>>TfMin(Ta,Tb){if(a.compareTo(b)<=0){returna;}else{returnb;}}}

See also

Notes

  1. F-bounded polymorphism for object-oriented programming. Canning, Cook, Hill, Olthof and Mitchell. http://dl.acm.org/citation.cfm?id=99392

Related Research Articles

ML is a general-purpose, high-level, functional programming language. It is known for its use of the polymorphic Hindley–Milner type system, which automatically assigns the data types of most expressions without requiring explicit type annotations, and ensures type safety; there is a formal proof that a well-typed ML program does not cause runtime type errors. ML provides pattern matching for function arguments, garbage collection, imperative programming, call-by-value and currying. While a general-purpose programming language, ML is used heavily in programming language research and is one of the few languages to be completely specified and verified using formal semantics. Its types and pattern matching make it well-suited and commonly used to operate on other formal languages, such as in compiler writing, automated theorem proving, and formal verification.

OCaml is a general-purpose, high-level, multi-paradigm programming language which extends the Caml dialect of ML with object-oriented features. OCaml was created in 1996 by Xavier Leroy, Jérôme Vouillon, Damien Doligez, Didier Rémy, Ascánder Suárez, and others.

<span class="mw-page-title-main">Data type</span> Attribute of data

In computer science and computer programming, a data type is a collection or grouping of data values, usually specified by a set of possible values, a set of allowed operations on these values, and/or a representation of these values as machine types. A data type specification in a program constrains the possible values that an expression, such as a variable or a function call, might take. On literal data, it tells the compiler or interpreter how the programmer intends to use the data. Most programming languages support basic data types of integer numbers, floating-point numbers, characters and Booleans.

Generic programming is a style of computer programming in which algorithms are written in terms of data types to-be-specified-later that are then instantiated when needed for specific types provided as parameters. This approach, pioneered in the programming language ML in 1973, permits writing common functions or data types that differ only in the set of types on which they operate when used, thus reducing duplicate code.

In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type to every term. Usually the terms are various language constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.

In programming language theory, subtyping is a form of type polymorphism. A subtype is a datatype that is related to another datatype by some notion of substitutability, meaning that program elements, written to operate on elements of the supertype, can also operate on elements of the subtype.

A method in object-oriented programming (OOP) is a procedure associated with an object, and generally also a message. An object consists of state data and behavior; these compose an interface, which specifies how the object may be used. A method is a behavior of an object parametrized by a user.

In programming language theory and type theory, polymorphism is the use of one symbol to represent multiple different types.

In computer science, a type signature or type annotation defines the inputs and outputs of a function, subroutine or method. A type signature includes the number, types, and order of the function's arguments. One important use of a type signature is for function overload resolution, where one particular definition of a function to be called is selected among many overloaded forms.

In programming languages, ad hoc polymorphism is a kind of polymorphism in which polymorphic functions can be applied to arguments of different types, because a polymorphic function can denote a number of distinct and potentially heterogeneous implementations depending on the type of argument(s) to which it is applied. When applied to object-oriented or procedural concepts, it is also known as function overloading or operator overloading. The term ad hoc in this context is not intended to be pejorative; it refers simply to the fact that this type of polymorphism is not a fundamental feature of the type system. This is in contrast to parametric polymorphism, in which polymorphic functions are written without mention of any specific type, and can thus apply a single abstract implementation to any number of types in a transparent way. This classification was introduced by Christopher Strachey in 1967.

In computer programming, a function object is a construct allowing an object to be invoked or called as if it were an ordinary function, usually with the same syntax. In some languages, particularly C++, function objects are often called functors.

In computer science, type conversion, type casting, type coercion, and type juggling are different ways of changing an expression from one data type to another. An example would be the conversion of an integer value into a floating point value or its textual representation as a string, and vice versa. Type conversions can take advantage of certain features of type hierarchies or data representations. Two important aspects of a type conversion are whether it happens implicitly (automatically) or explicitly, and whether the underlying data representation is converted from one representation into another, or a given representation is merely reinterpreted as the representation of another data type. In general, both primitive and compound data types can be converted.

Many programming language type systems support subtyping. For instance, if the type Cat is a subtype of Animal, then an expression of type Cat should be substitutable wherever an expression of type Animal is used.

In programming languages and type theory, parametric polymorphism allows a single piece of code to be given a "generic" type, using variables in place of actual types, and then instantiated with particular types as needed. Parametrically polymorphic functions and data types are sometimes called generic functions and generic datatypes, respectively, and they form the basis of generic programming.

<span class="mw-page-title-main">Oxygene (programming language)</span> Object Pascal-based programming language

Oxygene is a programming language developed by RemObjects Software for Microsoft's Common Language Infrastructure, the Java Platform and Cocoa. Oxygene is based on Delphi's Object Pascal, but also has influences from C#, Eiffel, Java, F# and other languages.

Haxe is a high-level cross-platform programming language and compiler that can produce applications and source code for many different computing platforms from one code-base. It is free and open-source software, released under an MIT License. The compiler, written in OCaml, is released under the GNU General Public License (GPL) version 2.

In functional programming, a generalized algebraic data type is a generalization of a parametric algebraic data type (ADT).

Generics are a facility of generic programming that were added to the Java programming language in 2004 within version J2SE 5.0. They were designed to extend Java's type system to allow "a type or method to operate on objects of various types while providing compile-time type safety". The aspect compile-time type safety required that parametrically polymorphic functions are not implemented in the Java virtual machine, since type safety is impossible in this case.

This article compares a large number of programming languages by tabulating their data types, their expression, statement, and declaration syntax, and some common operating-system interfaces.

A Hindley–Milner (HM) type system is a classical type system for the lambda calculus with parametric polymorphism. It is also known as Damas–Milner or Damas–Hindley–Milner. It was first described by J. Roger Hindley and later rediscovered by Robin Milner. Luis Damas contributed a close formal analysis and proof of the method in his PhD thesis.

References