Branched pathways

Last updated

Branched pathways, also known as branch points (not to be confused with the mathematical branch point), are a common pattern found in metabolism. This is where an intermediate species is chemically made or transformed by multiple enzymatic processes. linear pathways only have one enzymatic reaction producing a species and one enzymatic reaction consuming the species.

Contents

Branched pathways are present in numerous metabolic reactions, including glycolysis, the synthesis of lysine, glutamine, and penicillin, [1] and in the production of the aromatic amino acids. [2]

Simple Branch Pathway.
v
1
,
v
2
{\displaystyle v_{1},v_{2}}
and
v
3
{\displaystyle v_{3}}
are the reaction rates for each arm of the branch. Branch Using Rates Symbols.png
Simple Branch Pathway. and are the reaction rates for each arm of the branch.

In general, a single branch may have producing branches and consuming branches. If the intermediate at the branch point is given by , then the rate of change of is given by:

At steady-state when the consumption and production rates must be equal:

Biochemical pathways can be investigated by computer simulation or by looking at the sensitivities, i.e. control coefficients for flux and species concentrations using metabolic control analysis.

Elementary properties

A simple branched pathway has one key property related to the conservation of mass. In general, the rate of change of the branch species based on the above figure is given by:

At steady-state the rate of change of is zero. This gives rise to a steady-state constraint among the branch reaction rates:

Such constraints are key to computational methods such as flux balance analysis.

Control properties of a branch pathway

Branched pathways have unique control properties compared to simple linear chain or cyclic pathways. These properties can be investigated using metabolic control analysis. The fluxes can be controlled by enzyme concentrations , , and respectively, described by the corresponding flux control coefficients. To do this the flux control coefficients with respect to one of the branch fluxes can be derived. The derivation is shown in a subsequent section. The flux control coefficient with respect to the upper branch flux, are given by:

where is the fraction of flux going through the upper arm, , and the fraction going through the lower arm, . and are the elasticities for with respect to and respectively.

For the following analysis, the flux will be the observed variable in response to changes in enzyme concentrations.

There are two possible extremes to consider, either most of the flux goes through the upper branch or most of the flux goes through the lower branch, . The former, depicted in panel a), is the least interesting as it converts the branch in to a simple linear pathway. Of more interest is when most of the flux goes through

If most of the flux goes through , then and (condition (b) in the figure), the flux control coefficients for with respect to and can be written:

Changes in flux control depending on whether the flux goes through the upper or lower branches. The system output is J2. If most of the flux goes through J2(a) then the pathway behaves like a simple linear change, where flux control on J3 is negligible and control is shared between J1 and J2. The other extreme is when most of the flux goes through J3 (b). This makes J2 highly sensitive to changes in J1 and J3 resulting is very high flux control, often greater than 1.0. Under these conditions the flux control at J3 is also negative since J3 can siphon off flux from J2. BranchPointEffect.png
Changes in flux control depending on whether the flux goes through the upper or lower branches. The system output is J2. If most of the flux goes through J2(a) then the pathway behaves like a simple linear change, where flux control on J3 is negligible and control is shared between J1 and J2. The other extreme is when most of the flux goes through J3 (b). This makes J2 highly sensitive to changes in J1 and J3 resulting is very high flux control, often greater than 1.0. Under these conditions the flux control at J3 is also negative since J3 can siphon off flux from J2.

That is, acquires proportional influence over its own flux, . Since only carries a very small amount of flux, any changes in will have little effect on . Hence the flux through is almost entirely governed by the activity of . Because of the flux summation theorem and the fact that , it means that the remaining two coefficients must be equal and opposite in value. Since is positive, must be negative. This also means that in this situation, there can be more than one Rate-limiting step (biochemistry) in a pathway.

Unlike a linear pathway, values for and are not bounded between zero and one. Depending on the values of the elasticities, it is possible for the control coefficients in a branched system to greatly exceed one. [3] This has been termed the branchpoint effect by some in the literature. [4]

Example

Flux control coefficients in a branched pathway where most flux goes through
J
3
{\displaystyle J_{3}}
. Note that step 2 has almost proportional control over
J
2
{\displaystyle J_{2}}
while steps 1 and 3 show greater than proportional control over
J
2
{\displaystyle J_{2}}
. Branch ccf.png
Flux control coefficients in a branched pathway where most flux goes through . Note that step 2 has almost proportional control over while steps 1 and 3 show greater than proportional control over .

The following branch pathway model (in antimony format) illustrates the case and have very high flux control and step J2 has proportional control.

   J1: $Xo -> S1; e1*k1*Xo    J2:  S1 ->; e2*k3*S1/(Km1 + S1)    J3:  S1 ->; e3*k4*S1/(Km2 + S1)          k1 = 2.5;    k3 = 5.9; k4 = 20.75    Km1 = 4; Km2 = 0.02    Xo =5;     e1 = 1; e2 = 1; e3 = 1

A simulation of this model yields the following values for the flux control coefficients with respect to flux

Branch point theorems

In a linear pathway, only two sets of theorems exist, the summation and connectivity theorems. Branched pathways have an additional set of branch centric summation theorems. When combined with the connectivity theorems and the summation theorem, it is possible to derive the control equations shown in the previous section. The deviation of the branch point theorems is as follows.

  1. Define the fractional flux through and as and respectively.
  2. Increase by . This will decrease and increase through relief of product inhibition. [5]
  3. Make a compensatory change in by decreasing such that is restored to its original concentration (hence ).
  4. Since and have not changed, .

Following these assumptions two sets of equations can be derived: the flux branch point theorems and the concentration branch point theorems. [6]

Derivation

From these assumptions, the following system equation can be produced:

Because and, assuming that the flux rates are directly related to the enzyme concentration thus, the elasticities, , equal one, the local equations are:

Substituting for in the system equation results in:

Conservation of mass dictates since then . Substitution eliminates the term from the system equation:

Dividing out results in:

and can be substituted by the fractional rates giving:

Rearrangement yields the final form of the first flux branch point theorem: [6]

Similar derivations result in two more flux branch point theorems and the three concentration branch point theorems.

Flux branch point theorems

Concentration branch point theorems


Following the flux summation theorem [7] and the connectivity theorem [8] the following system of equations can be produced for the simple pathway. [9]


Using these theorems plus flux summation and connectivity theorems values for the concentration and flux control coefficients can be determined using linear algebra. [6]

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries over physical space.

In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n. It is named after the Italian mathematician and physicist Tullio Levi-Civita. Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric property and definition in terms of permutations.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

Chebyshev filters are analog or digital filters that have a steeper roll-off than Butterworth filters, and have either passband ripple or stopband ripple. Chebyshev filters have the property that they minimize the error between the idealized and the actual filter characteristic over the operating frequency range of the filter, but they achieve this with ripples in the passband. This type of filter is named after Pafnuty Chebyshev because its mathematical characteristics are derived from Chebyshev polynomials. Type I Chebyshev filters are usually referred to as "Chebyshev filters", while type II filters are usually called "inverse Chebyshev filters". Because of the passband ripple inherent in Chebyshev filters, filters with a smoother response in the passband but a more irregular response in the stopband are preferred for certain applications.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

Metabolic control analysis (MCA) is a mathematical framework for describing metabolic, signaling, and genetic pathways. MCA quantifies how variables, such as fluxes and species concentrations, depend on network parameters. In particular, it is able to describe how network-dependent properties, called control coefficients, depend on local properties called elasticities or Elasticity Coefficients.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

<span class="mw-page-title-main">Dual quaternion</span> Eight-dimensional algebra over the real numbers

In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε2 = 0 and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra.

When an electromagnetic wave travels through a medium in which it gets attenuated, it undergoes exponential decay as described by the Beer–Lambert law. However, there are many possible ways to characterize the wave and how quickly it is attenuated. This article describes the mathematical relationships among:

The rate of a chemical reaction is influenced by many different factors, such as temperature, pH, reactant, and product concentrations and other effectors. The degree to which these factors change the reaction rate is described by the elasticity coefficient. This coefficient is defined as follows:

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

The exponential mechanism is a technique for designing differentially private algorithms. It was developed by Frank McSherry and Kunal Talwar in 2007. Their work was recognized as a co-winner of the 2009 PET Award for Outstanding Research in Privacy Enhancing Technologies.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.

Control coefficients measure the response of a biochemical pathway to changes in enzyme activity. The response coefficient, as originally defined by Kacser and Burns, is a measure of how external factors such as inhibitors, pharmaceutical drugs, or boundary species affect the steady-state fluxes and species concentrations. The flux response coefficient is defined by:

In metabolic control analysis, a variety of theorems have been discovered and discussed in the literature. The most well known of these are flux and concentration control coefficient summation relationships. These theorems are the result of the stoichiometric structure and mass conservation properties of biochemical networks. Equivalent theorems have not been found, for example, in electrical or economic systems.

The stoichiometric structure and mass-conservation properties of biochemical pathways gives rise to a series of theorems or relationships between the control coefficients and the control coefficients and elasticities. There are a large number of such relationships depending on the pathway configuration which have been documented and discovered by various authors. The term theorem has been used to describe these relationships because they can be proved in terms of more elementary concepts. The operational proofs in particular are of this nature.

References

  1. Heijnen, J. J.; van Gulik, W. M.; Shimizu, H.; Stephanopoulos, G. (2004-10-01). "Metabolic flux control analysis of branch points: an improved approach to obtain flux control coefficients from large perturbation data". Metabolic Engineering. 6 (4): 391–400. doi:10.1016/j.ymben.2004.07.002. ISSN   1096-7176. PMID   15491867.
  2. "W_2022_Bis2a_Igo_Reading_15". Biology LibreTexts. 2021-12-13. Retrieved 2022-12-15.
  3. Kacser, H. (1 January 1983). "The control of enzyme systems in vivo : Elasticity analysis of the steady state". Biochemical Society Transactions. 11 (1): 35–40. doi:10.1042/bst0110035. PMID   6825913.
  4. LaPorte, D C; Walsh, K; Koshland, D E (November 1984). "The branch point effect. Ultrasensitivity and subsensitivity to metabolic control". Journal of Biological Chemistry. 259 (22): 14068–14075. doi: 10.1016/S0021-9258(18)89857-X .
  5. Liu, Yan; Zhang, Fan; Jiang, Ling; Perry, J. Jefferson P.; Zhao, Zhihe; Liao, Jiayu (2021-12-15). "Product inhibition kinetics determinations - Substrate interaction affinity and enzymatic kinetics using one quantitative FRET assay". International Journal of Biological Macromolecules. 193 (Pt B): 1481–1487. doi:10.1016/j.ijbiomac.2021.10.211. ISSN   0141-8130. PMID   34780893. S2CID   244107621.
  6. 1 2 3 Sauro, Herbert (2018). Systems Biology: An Introduction to Metabolic Control Analysis (1st ed.). Ambrosius Publishing. pp. 115–122. ISBN   978-0-9824773-6-6.
  7. Agutter, Paul S. (2008-10-21). "The flux-summation theorem and the 'evolution of dominance'". Journal of Theoretical Biology. 254 (4): 821–825. doi:10.1016/j.jtbi.2008.07.027. ISSN   0022-5193. PMID   18706429.
  8. Kacser, H.; Burns, J. A. (1973). "The control of flux". Symposia of the Society for Experimental Biology. 27: 65–104. ISSN   0081-1386. PMID   4148886.
  9. Fell, David A.; Sauro, Herbert M. (1985). "Metabolic control and its analysis. Additional relationships between elasticities and control coefficients". European Journal of Biochemistry (published May 1985). 148 (3): 555–561. doi: 10.1111/j.1432-1033.1985.tb08876.x . ISSN   0014-2956. PMID   3996393.