Brezis–Lieb lemma

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia

In the mathematical field of analysis, the Brezis–Lieb lemma is a basic result in measure theory. It is named for Haïm Brézis and Elliott Lieb, who discovered it in 1983. The lemma can be viewed as an improvement, in certain settings, of Fatou's lemma to an equality. As such, it has been useful for the study of many variational problems. [1]

Contents

The lemma and its proof

Statement of the lemma

Let (X, μ) be a measure space and let fn be a sequence of measurable complex-valued functions on X which converge almost everywhere to a function f. The limiting function f is automatically measurable. The Brezis–Lieb lemma asserts that if p is a positive number, then

provided that the sequence fn is uniformly bounded in Lp(X, μ). [2] A significant consequence, which sharpens Fatou's lemma as applied to the sequence |fn|p, is that

which follows by the triangle inequality. This consequence is often taken as the statement of the lemma, although it does not have a more direct proof. [3]

Proof

The essence of the proof is in the inequalities

The consequence is that Wn − ε|ffn|p, which converges almost everywhere to zero, is bounded above by an integrable function, independently of n. The observation that

and the application of the dominated convergence theorem to the first term on the right-hand side shows that

The finiteness of the supremum on the right-hand side, with the arbitrariness of ε, shows that the left-hand side must be zero.

Related Research Articles

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz. Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, finance, engineering, and other disciplines.

In probability theory, there exist several different notions of convergence of random variables. The convergence of sequences of random variables to some limit random variable is an important concept in probability theory, and its applications to statistics and stochastic processes. The same concepts are known in more general mathematics as stochastic convergence and they formalize the idea that a sequence of essentially random or unpredictable events can sometimes be expected to settle down into a behavior that is essentially unchanging when items far enough into the sequence are studied. The different possible notions of convergence relate to how such a behavior can be characterized: two readily understood behaviors are that the sequence eventually takes a constant value, and that values in the sequence continue to change but can be described by an unchanging probability distribution.

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

In measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the L1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

In mathematics, the total variation identifies several slightly different concepts, related to the structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

Riemann–Lebesgue lemma

In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis.

In measure theory, an area of mathematics, Egorov's theorem establishes a condition for the uniform convergence of a pointwise convergent sequence of measurable functions. It is also named Severini–Egoroff theorem or Severini–Egorov theorem, after Carlo Severini, an Italian mathematician, and Dmitri Egorov, a Russian physicist and geometer, who published independent proofs respectively in 1910 and 1911.

In mathematics, the Riesz–Fischer theorem in real analysis is any of a number of closely related results concerning the properties of the space L2 of square integrable functions. The theorem was proven independently in 1907 by Frigyes Riesz and Ernst Sigismund Fischer.

In mathematics, the Fatou–Lebesgue theorem establishes a chain of inequalities relating the integrals of the limit inferior and the limit superior of a sequence of functions to the limit inferior and the limit superior of integrals of these functions. The theorem is named after Pierre Fatou and Henri Léon Lebesgue.

In mathematics, more specifically measure theory, there are various notions of the convergence of measures. For an intuitive general sense of what is meant by convergence in measure, consider a sequence of measures μn on a space, sharing a common collection of measurable sets. Such a sequence might represent an attempt to construct 'better and better' approximations to a desired measure μ that is difficult to obtain directly. The meaning of 'better and better' is subject to all the usual caveats for taking limits; for any error tolerance ε > 0 we require there be N sufficiently large for nN to ensure the 'difference' between μn and μ is smaller than ε. Various notions of convergence specify precisely what the word 'difference' should mean in that description; these notions are not equivalent to one another, and vary in strength.

Convergence in measure is either of two distinct mathematical concepts both of which generalize the concept of convergence in probability.

In mathematical analysis, the Russo–Vallois integral is an extension to stochastic processes of the classical Riemann–Stieltjes integral

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales. The definition used in measure theory is closely related to, but not identical to, the definition typically used in probability.

In real analysis and measure theory, the Vitali convergence theorem, named after the Italian mathematician Giuseppe Vitali, is a generalization of the better-known dominated convergence theorem of Henri Lebesgue. It is a characterization of the convergence in Lp in terms of convergence in measure and a condition related to uniform integrability.

This article is supplemental for “Convergence of random variables” and provides proofs for selected results.

In mathematics, the Christ–Kiselev maximal inequality is a maximal inequality for filtrations, named for mathematicians Michael Christ and Alexander Kiselev.

References

Footnotes

  1. Lions 1985.
  2. Brézis & Lieb 1983, Theorem 2; Bogachev 2007, Proposition 4.7.30; Lieb & Loss 2001, Theorem 1.9.
  3. Brézis & Lieb 1983, Theorem 1; Evans 1990, Theorem 1.8; Willem 1996, Lemma 1.32.

Sources