Bridged nucleic acid

Last updated

A bridged nucleic acid (BNA) is a modified RNA nucleotide. They are sometimes also referred to as constrained or inaccessible RNA molecules. BNA monomers can contain a five-membered, six-membered or even a seven-membered bridged structure with a "fixed" C3'-endo sugar puckering. [1] The bridge is synthetically incorporated at the 2', 4'-position of the ribose to afford a 2', 4'-BNA monomer. The monomers can be incorporated into oligonucleotide polymeric structures using standard phosphoramidite chemistry. BNAs are structurally rigid oligo-nucleotides with increased binding affinities and stability.

Contents

Chemical structures

Chemical structures of BNA monomers containing a bridge at the 2', 4'-position of the ribose to afford a 2', 4'-BNA monomer as synthesized by Takeshi Imanishi's group. [2] [3] [4] [5] [6] [7] The nature of the bridge can vary for different types of monomers. The 3D structures for A-RNA and B-DNA were used as a template for the design of the BNA monomers. The goal for the design was to find derivatives that possess high binding affinities with complementary RNA and/or DNA strands.

The 3D structures for A-RNA and B-DNA BNAH1.png
The 3D structures for A-RNA and B-DNA

BNAH2.png

An increased conformational inflexibility of the sugar moiety in nucleosides (oligonucleotides) results in a gain of high binding affinity with complementary single-stranded RNA and/or double-stranded DNA. The first 2',4'-BNA (LNA) monomers were first synthesized by Takeshi Imanishi's group in 1997 [2] followed independently by Jesper Wengel's group in 1998. [8]

Chemical structures of other BNAs that were synthesized in the past years as indicated below the structures. BNAH6.png
Chemical structures of other BNAs that were synthesized in the past years as indicated below the structures.

BNA nucleotides can be incorporated into DNA or RNA oligonucleotides at any desired position. Such oligomers are synthesized chemically and are now commercially available. The bridged ribose conformation enhances base stacking and pre-organizes the backbone of the oligonucleotide significantly increasing their hybridization properties.

The incorporation of BNAs into oligonucleotides allows the production of modified synthetic oligonucleotides with equal or higher binding affinity against a DNA or RNA complement with excellent single-mismatch discriminating power; better RNA selective binding; stronger and more sequence selective triplex-forming characters; pronounced higher nuclease resistance, even higher than Sp-phosphorothioate analogues; and good aqueous solubility of the resulting oligonucleotides when compared to regular DNA or RNA oligonucleotides.

Chemical structures of BNAs were introduced in 2007 by Imanishi's group. These new generation of BNAs analogues are called 2',4'-BNA [NH], 2',4'-BNA [NMe], and 2',4'-BNA [NBn]. BNAH8.png
Chemical structures of BNAs were introduced in 2007 by Imanishi's group. These new generation of BNAs analogues are called 2',4'-BNA [NH], 2',4'-BNA [NMe], and 2',4'-BNA [NBn].

New BNA analogs introduced by Imanishi's group were designed by taking the length of the bridged moiety into account. A six-membered bridged structure with a unique structural feature (N-O bond) in the sugar moiety was designed to have a nitrogen atom. This atom improves the formation of duplexes and triplexes by lowering the repulsion between the negatively charged backbone phosphates. These modifications allow to control the affinity towards complementary strands, regulate resistance against nuclease degradation and the synthesis of functional molecules designed for specific applications in genomics. The properties of these analogs were investigated and compared to those of previous 2',4'-BNA (LNA) modified oligonucleotides by Imanishi's group. Imanishi's results show that "2',4'-BNANC-modified oligonucleotides with these profiles show great promise for applications in antisense and antigene technologies."

Makoto Koizumi in 2004 reviewed the properties of BNAs with focus on ENAs as antisense and antigen oligonucleotides (AONs) and proposed an action mechanism for these compounds that may involve translation arrest, mRNA degradation mediated by RNase H and splicing arrest. BNAH9.png
Makoto Koizumi in 2004 reviewed the properties of BNAs with focus on ENAs as antisense and antigen oligonucleotides (AONs) and proposed an action mechanism for these compounds that may involve translation arrest, mRNA degradation mediated by RNase H and splicing arrest.

Proposed mechanism of action of AONs

Yamamoto et al. in 2012 [9] demonstrated that BNA-based antisense therapeutics inhibited hepatic PCSK9 expression, resulting in a strong reduction of the serum LDL-C levels of mice. The findings supported the hypothesis that PCSK9 is a potential therapeutic target for hypercholesterolemia and the researchers were able to show that BNA-based antisense oligonucleotides (AONs) induced cholesterol-lowering action in hypercholesterolemic mice. A moderate increase of aspartate aminotransferase, ALT, and blood urea nitrogen levels was observed whereas the histopathological analysis revealed no severe hepatic toxicities. The same group, also in 2012, reported that the 2',4'-BNANC[NMe] analog when used in antisense oligonucleotides showed significantly stronger inhibitory activities which is more pronounced in shorter (13- to 16mer) oligonucleotides. Their data led the researchers to conclude that the 2',4'-BNANC[NMe] analog may be a better alternative to conventional LNAs.

Benefits of the BNA technology

Some of the benefits of BNAs include ideal for the detection of short RNA and DNA targets; increase the thermal stability of duplexes; capable of single nucleotide discrimination; increases the thermal stability of triplexes; resistance to exo- and endonucleases resulting in a high stability for in vivo and in vitro applications; increased target specificity; facilitate Tm normalization; strand invasion enables detection of "hard to access" samples; compatible with standard enzymatic processes.[ citation needed ]

Application of the BNA technology

Application of BNAs include small RNA research; design and synthesis of RNA aptamers; siRNA; antisense probes; diagnostics; isolation; microarray analysis; Northern blotting; real-time PCR; in situ hybridization; functional analysis; SNP detection and use as antigens and many others nucleotide base applications. [10] [ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Nucleic acid</span> Class of large biomolecules essential to all known life

Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). If the sugar is ribose, the polymer is RNA; if the sugar is the ribose derivative deoxyribose, the polymer is DNA.

<span class="mw-page-title-main">Nucleotide</span> Biological molecules that form the building blocks of nucleic acids

Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">RNA</span> Family of large biological molecules

Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid (DNA) are nucleic acids. Along with lipids, proteins, and carbohydrates, nucleic acids constitute one of the four major macromolecules essential for all known forms of life. Like DNA, RNA is assembled as a chain of nucleotides, but unlike DNA, RNA is found in nature as a single strand folded onto itself, rather than a paired double strand. Cellular organisms use messenger RNA (mRNA) to convey genetic information that directs synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome.

<span class="mw-page-title-main">Nucleobase</span> Nitrogen-containing biological compounds that form nucleosides

Nucleobases, also known as nitrogenous bases or often simply bases, are nitrogen-containing biological compounds that form nucleosides, which, in turn, are components of nucleotides, with all of these monomers constituting the basic building blocks of nucleic acids. The ability of nucleobases to form base pairs and to stack one upon another leads directly to long-chain helical structures such as ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). Five nucleobases—adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U)—are called primary or canonical. They function as the fundamental units of the genetic code, with the bases A, G, C, and T being found in DNA while A, G, C, and U are found in RNA. Thymine and uracil are distinguished by merely the presence or absence of a methyl group on the fifth carbon (C5) of these heterocyclic six-membered rings. In addition, some viruses have aminoadenine (Z) instead of adenine. It differs in having an extra amine group, creating a more stable bond to thymine.

<span class="mw-page-title-main">Nucleoside</span> Any of several glycosylamines comprising a nucleobase and a sugar molecule

Nucleosides are glycosylamines that can be thought of as nucleotides without a phosphate group. A nucleoside consists simply of a nucleobase and a five-carbon sugar whereas a nucleotide is composed of a nucleobase, a five-carbon sugar, and one or more phosphate groups. In a nucleoside, the anomeric carbon is linked through a glycosidic bond to the N9 of a purine or the N1 of a pyrimidine. Nucleotides are the molecular building blocks of DNA and RNA.

<span class="mw-page-title-main">Peptide nucleic acid</span> Biological molecule

Peptide nucleic acid (PNA) is an artificially synthesized polymer similar to DNA or RNA.

Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids can be manufactured as single-stranded molecules with any user-specified sequence, and so are vital for artificial gene synthesis, polymerase chain reaction (PCR), DNA sequencing, molecular cloning and as molecular probes. In nature, oligonucleotides are usually found as small RNA molecules that function in the regulation of gene expression, or are degradation intermediates derived from the breakdown of larger nucleic acid molecules.

<span class="mw-page-title-main">Ribonucleotide</span> Nucleotide containing ribose as its pentose component

In biochemistry, a ribonucleotide is a nucleotide containing ribose as its pentose component. It is considered a molecular precursor of nucleic acids. Nucleotides are the basic building blocks of DNA and RNA. Ribonucleotides themselves are basic monomeric building blocks for RNA. Deoxyribonucleotides, formed by reducing ribonucleotides with the enzyme ribonucleotide reductase (RNR), are essential building blocks for DNA. There are several differences between DNA deoxyribonucleotides and RNA ribonucleotides. Successive nucleotides are linked together via phosphodiester bonds.

<span class="mw-page-title-main">Locked nucleic acid</span> Biological molecule

A locked nucleic acid (LNA), also known as bridged nucleic acid (BNA), and often referred to as inaccessible RNA, is a modified RNA nucleotide in which the ribose moiety is modified with an extra bridge connecting the 2' oxygen and 4' carbon. The bridge "locks" the ribose in the 3'-endo (North) conformation, which is often found in the A-form duplexes. This structure provides for increased stability against enzymatic degradation. LNA also offers improved specificity and affinity in base-pairing as a monomer or a constituent of an oligonucleotide. LNA nucleotides can be mixed with DNA or RNA residues in a oligonucleotide.

In molecular biology, a polynucleotide is a biopolymer composed of 13 or more nucleotide monomers, covalently bonded in a chain. DNA and RNA are examples of polynucleotides with distinct biological functions. DNA consists of two chains of polynucleotides, with each chain in the form of a helix.

Threose nucleic acid (TNA) is an artificial genetic polymer in which the natural five-carbon ribose sugar found in RNA has been replaced by an unnatural four-carbon threose sugar. Invented by Albert Eschenmoser as part of his quest to explore the chemical etiology of RNA, TNA has become an important synthetic genetic polymer (XNA) due to its ability to efficiently base pair with complementary sequences of DNA and RNA. However, unlike DNA and RNA, TNA is completely refractory to nuclease digestion, making it a promising nucleic acid analog for therapeutic and diagnostic applications.

<span class="mw-page-title-main">Glycol nucleic acid</span> Polymer similar to DNA

Glycol nucleic acid (GNA), sometimes also referred to as glycerol nucleic acid, is a nucleic acid similar to DNA or RNA but differing in the composition of its sugar-phosphodiester backbone, using propylene glycol in place of ribose or deoxyribose. GNA is chemically stable but not known to occur naturally. However, due to its simplicity, it might have played a role in the evolution of life.

In molecular biology and genetics, the sense of a nucleic acid molecule, particularly of a strand of DNA or RNA, refers to the nature of the roles of the strand and its complement in specifying a sequence of amino acids. Depending on the context, sense may have slightly different meanings. For example, negative-sense strand of DNA is equivalent to the template strand, whereas the positive-sense strand is the non-template strand whose nucleotide sequence is equivalent to the sequence of the mRNA transcript.

<span class="mw-page-title-main">Nucleic acid metabolism</span> Process

Nucleic acid metabolism is a collective term that refers to the variety of chemical reactions by which nucleic acids are either synthesized or degraded. Nucleic acids are polymers made up of a variety of monomers called nucleotides. Nucleotide synthesis is an anabolic mechanism generally involving the chemical reaction of phosphate, pentose sugar, and a nitrogenous base. Degradation of nucleic acids is a catabolic reaction and the resulting parts of the nucleotides or nucleobases can be salvaged to recreate new nucleotides. Both synthesis and degradation reactions require multiple enzymes to facilitate the event. Defects or deficiencies in these enzymes can lead to a variety of diseases.

<span class="mw-page-title-main">Nucleic acid analogue</span> Compound analogous to naturally occurring RNA and DNA

Nucleic acid analogues are compounds which are analogous to naturally occurring RNA and DNA, used in medicine and in molecular biology research. Nucleic acids are chains of nucleotides, which are composed of three parts: a phosphate backbone, a pentose sugar, either ribose or deoxyribose, and one of four nucleobases. An analogue may have any of these altered. Typically the analogue nucleobases confer, among other things, different base pairing and base stacking properties. Examples include universal bases, which can pair with all four canonical bases, and phosphate-sugar backbone analogues such as PNA, which affect the properties of the chain . Nucleic acid analogues are also called Xeno Nucleic Acid and represent one of the main pillars of xenobiology, the design of new-to-nature forms of life based on alternative biochemistries.

<small>L</small>-Ribonucleic acid aptamer RNA-like molecule

An L-ribonucleic acid aptamer is an RNA-like molecule built from L-ribose units. It is an artificial oligonucleotide named for being a mirror image of natural oligonucleotides. L-RNA aptamers are a form of aptamers. Due to their L-nucleotides, they are highly resistant to degradation by nucleases. L-RNA aptamers are considered potential drugs and are currently being tested in clinical trials.

Twisted intercalating nucleic acid (TINA) is a nucleic acid molecule that, when added to triplex-forming oligonucleotides (TFOs), stabilizes Hoogsteen triplex DNA formation from double-stranded DNA (dsDNA) and TFOs. Its ability to twist around a triple bond increases ease of intercalation within double stranded DNA in order to form triplex DNA. Certain configurations have been shown to stabilize Watson-Crick antiparallel duplex DNA. TINA-DNA primers have been shown to increase the specificity of binding in PCR. The use of TINA insertions in G-quadruplexes has also been shown to enhance anti-HIV-1 activity. TINA stabilized PT demonstrates improved sensitivity and specificity of DNA based clinical diagnostic assays.

A hybridization assay comprises any form of quantifiable hybridization i.e. the quantitative annealing of two complementary strands of nucleic acids, known as nucleic acid hybridization.

<span class="mw-page-title-main">Miravirsen</span> Medication

Miravirsen is an experimental drug for the treatment of hepatitis C, being developed by Santaris Pharma. As of 2017 it was in Phase II clinical trials.

Gapmers are short DNA antisense oligonucleotide structures with RNA-like segments on both sides of the sequence. These linear pieces of genetic information are designed to hybridize to a target piece of RNA and silence the gene through the induction of RNase H cleavage. Binding of the gapmer to the target has a higher affinity due to the modified RNA flanking regions, as well as resistance to degradation by nucleases. Gapmers are currently being developed as therapeutics for a variety of cancers, viruses, and other chronic genetic disorders.

References

  1. Saenger, W. (1984) Principles of Nucleic Acid Structure, Springer-Verlag, New York, ISBN   3-540-90761-0.
  2. 1 2 Obika, S.; Nanbu, D.; Hari, Y.; Morio, K. I.; In, Y.; Ishida, T.; Imanishi, T. (1997). "Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, -endo sugar puckering". Tetrahedron Letters. 38 (50): 8735. doi:10.1016/S0040-4039(97)10322-7.
  3. Obika, S.; Onoda, M.; Andoh, K.; Imanishi, J.; Morita, M.; Koizumi, T. (2001). "3'-amino-2',4'-BNA: Novel bridged nucleic acids having an N3'-->P5' phosphoramidate linkage". Chemical Communications (19): 1992–1993. doi:10.1039/b105640a. PMID   12240255.
  4. Obika, Satoshi; Hari, Yoshiyuki; Sekiguchi, Mitsuaki; Imanishi, Takeshi (2001). "A 2′,4′-Bridged Nucleic Acid Containing 2-Pyridone as a Nucleobase: Efficient Recognition of a C⋅G Interruption by Triplex Formation with a Pyrimidine Motif". Angewandte Chemie International Edition. 40 (11): 2079. doi:10.1002/1521-3773(20010601)40:11<2079::AID-ANIE2079>3.0.CO;2-Z.
  5. Morita, K.; Hasegawa, C.; Kaneko, M.; Tsutsumi, S.; Sone, J.; Ishikawa, T.; Imanishi, T.; Koizumi, M. (2001). "2'-O,4'-C-ethylene-bridged nucleic acids (ENA) with nuclease-resistance and high affinity for RNA". Nucleic Acids Research. Supplement. 1 (1): 241–242. doi: 10.1093/nass/1.1.241 . PMID   12836354.
  6. Hari, Y.; Obika, S.; Sekiguchi, M.; Imanishi, T. (2003). "Selective recognition of CG interruption by 2′,4′-BNA having 1-isoquinolone as a nucleobase in a pyrimidine motif triplex formation". Tetrahedron. 59 (27): 5123. doi:10.1016/S0040-4020(03)00728-2.
  7. 1 2 Rahman, S. M. A.; Seki, S.; Obika, S.; Haitani, S.; Miyashita, K.; Imanishi, T. (2007). "Highly Stable Pyrimidine-Motif Triplex Formation at Physiological pH Values by a Bridged Nucleic Acid Analogue". Angewandte Chemie International Edition. 46 (23): 4306–4309. doi:10.1002/anie.200604857. PMID   17469090.
  8. Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar, R.; Meldgaard, M.; Olsen, C. E.; Wengel, J. (1998). "LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition". Tetrahedron. 54 (14): 3607. doi:10.1016/S0040-4020(98)00094-5.
  9. Koizumi, M. (2006). "ENA oligonucleotides as therapeutics". Current Opinion in Molecular Therapeutics. 8 (2): 144–149. PMID   16610767.
  10. Soler-Bistué, Alfonso; Zorreguieta, Angeles; Tolmasky, Marcelo E. (31 May 2019). "Bridged Nucleic Acids Reloaded". Molecules. 24 (12): 2297. doi: 10.3390/molecules24122297 . PMC   6630285 . PMID   31234313.