Bubble curtain

Last updated
A bubble curtain in Florida used to stop debris entering the marina. BubbleCurtainFlorida.jpg
A bubble curtain in Florida used to stop debris entering the marina.

A bubble curtain is a system that produces bubbles in a deliberate arrangement in water. It is also called pneumatic barrier. The technique is based on bubbles of air (gas) being let out under the water surface, commonly on the bottom. When the bubbles rise they act as a barrier, a curtain, breaking the propagation of waves or the spreading of particles and other contaminants. [1]

Contents

Uses

It can be used for the following purposes:

In June 2010, Okaloosa County, Florida used air bubble curtains to help protect their Destin Pass coastline from oil produced in the Gulf of Mexico by the Deepwater Horizon oil spill. They hoped to push oil up to the surface for booms and skimming boats to collect the oil. British multinational oil company BP, who the U.S. government named as the responsible party for the oil spill, was billed for the cost of the project. [9]

A pneumatic barrier in a navigation lock in the Netherlands Bellenscherm Krammersluis.jpg
A pneumatic barrier in a navigation lock in the Netherlands

Equipment

The technical system basically consists of a compressor and pipe or hose with nozzles. When used to reduce acoustic waves from pile driving, a distribution manifold made of plastic or rubber is commonly used. [10]

Offshore pile driving

Pile driving in connection to offshore construction, most importantly monopile foundations for offshore wind turbines, produces very high levels of underwater noise, [3] capable of inflicting damage to the hearing of marine organisms [11] and deter animals at tens of km from the construction site. [12] [13] Large-scale bubble curtains are now routinely used to mitigate these impacts as they can attenuate the noise significantly, in particular the higher frequencies, above 1 kHz. [3]

Bubble curtain used during installation of monopiles at the German Borkum West-2 offshore wind farm Big Bubble Curtain Borkum-West-2.jpg
Bubble curtain used during installation of monopiles at the German Borkum West-2 offshore wind farm
Air hose of prototype of bubble curtain Big Bubble Curtain Prototyp.jpg
Air hose of prototype of bubble curtain

See also

Related Research Articles

<span class="mw-page-title-main">Sonar</span> Technique that uses sound propagation

Sonar is a technique that uses sound propagation to navigate, measure distances (ranging), communicate with or detect objects on or under the surface of the water, such as other vessels.

<span class="mw-page-title-main">Ultrasound</span> Sound waves with frequencies above the human hearing range

Ultrasound is sound with frequencies greater than 20 kilohertz. This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.

<span class="mw-page-title-main">Porpoise</span> Small cetacean of the family Phocoenidae

Porpoises are a group of fully aquatic marine mammals, all of which are classified under the family Phocoenidae, parvorder Odontoceti. Although similar in appearance to dolphins, they are more closely related to narwhals and belugas than to the true dolphins. There are eight extant species of porpoise, all among the smallest of the toothed whales. Porpoises are distinguished from dolphins by their flattened, spade-shaped teeth distinct from the conical teeth of dolphins, and lack of a pronounced beak, although some dolphins also lack a pronounced beak. Porpoises, and other cetaceans, belong to the clade Cetartiodactyla with even-toed ungulates.

<span class="mw-page-title-main">Noise pollution</span> Excessive, displeasing human, animal, or machine-created environmental noise

Noise pollution, or sound pollution, is the propagation of noise or sound with ranging impacts on the activity of human or animal life, most of which are harmful to a degree. The source of outdoor noise worldwide is mainly caused by machines, transport and propagation systems. Poor urban planning may give rise to noise disintegration or pollution, side-by-side industrial and residential buildings can result in noise pollution in the residential areas. Some of the main sources of noise in residential areas include loud music, transportation, lawn care maintenance, construction, electrical generators, wind turbines, explosions and people.

<span class="mw-page-title-main">Soundproofing</span> Methods to reduce sound pressure

Soundproofing is any means of impeding sound propagation. There are several basic ways to reduce sound: increasing the distance between source and receiver, decoupling, using noise barriers to reflect or absorb the energy of the sound waves, using damping structures such as sound baffles for absorption, or using active antinoise sound generators.

<span class="mw-page-title-main">Harbour porpoise</span> Species of mammal

The harbour porpoise is one of eight extant species of porpoise. It is one of the smallest species of cetacean. As its name implies, it stays close to coastal areas or river estuaries, and as such, is the most familiar porpoise to whale watchers. This porpoise often ventures up rivers, and has been seen hundreds of kilometres from the sea. The harbour porpoise may be polytypic, with geographically distinct populations representing distinct races: P. p. phocoena in the North Atlantic and West Africa, P. p. relicta in the Black Sea and Sea of Azov, an unnamed population in the northwestern Pacific and P. p. vomerina in the northeastern Pacific.

<span class="mw-page-title-main">Prairie-Masker</span> Radiated noise reduction system fitted to some western warships

Prairie-Masker is a radiated noise reduction system fitted to some western warships, including the Oliver Hazard Perry-class frigates, Spruance and Arleigh Burke-class destroyers, and the Ticonderoga-class cruisers of the US Navy. The system was also installed during the 1960s on a limited number of post WWII Guppy III modified, and later diesel submarines.

<span class="mw-page-title-main">Pile driver</span> Heavy equipment

A pile driver is a heavy-duty tool used to drive piles into soil to build piers, bridges, cofferdams, and other "pole" supported structures, and patterns of pilings as part of permanent deep foundations for buildings or other structures. Pilings may be made of wood, solid steel, or tubular steel, and may be driven entirely underwater/underground, or remain partially aboveground as elements of a finished structure.

<span class="mw-page-title-main">Pneumatic barrier</span>

A pneumatic barrier is a method to contain oil spills. It is also called a bubble curtain. Air bubbling through a perforated pipe causes an upward water flow that slows the spread of oil. It can also be used to stop fish from entering polluted water. A further application of the pneumatic barrier is to decrease the salt-water exchange in navigation locks and prevent salt intrusion in rivers. . Pneumatic barriers are also known as air curtains. The pneumatic barrier is a (non-patented) invention of the Dutch engineer Johan van Veen from around 1940 .

Sensory ecology is a relatively new field focusing on the information organisms obtain about their environment. It includes questions of what information is obtained, how it is obtained, and why the information is useful to the organism.

<span class="mw-page-title-main">Underwater acoustics</span> Study of the propagation of sound in water

Underwater acoustics or hydroacoustics is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries. The water may be in the ocean, a lake, a river or a tank. Typical frequencies associated with underwater acoustics are between 10 Hz and 1 MHz. The propagation of sound in the ocean at frequencies lower than 10 Hz is usually not possible without penetrating deep into the seabed, whereas frequencies above 1 MHz are rarely used because they are absorbed very quickly.

The ASA Silver Medal is an award presented by the Acoustical Society of America to individuals, without age limitation, for contributions to the advancement of science, engineering, or human welfare through the application of acoustic principles or through research accomplishments in acoustics. The medal is awarded in a number of categories depending on the technical committee responsible for making the nomination.

Auditory fatigue is defined as a temporary loss of hearing after exposure to sound. This results in a temporary shift of the auditory threshold known as a temporary threshold shift (TTS). The damage can become permanent if sufficient recovery time is not allowed before continued sound exposure. When the hearing loss is rooted from a traumatic occurrence, it may be classified as noise-induced hearing loss, or NIHL.

<span class="mw-page-title-main">Helen Czerski</span> British physicist, oceanographer, and television presenter

Helen Czerski is a British physicist and oceanographer and television presenter. She is a research fellow in the department of mechanical engineering at University College London. She was previously at the Institute for Sound and Vibration Research at the University of Southampton.

<span class="mw-page-title-main">Bernd Würsig</span> Marine mammal behavioral ecologist

Bernd Gerhard Würsig is an educator and researcher who works mainly on aspects of behavior and behavioral ecology of whales and dolphins. Much of his early work was done in close collaboration with his wife Melany Ann Würsig, and they have published numerous manuscripts and books together. He is now Professor Emeritus at Texas A&M University, teaching only occasionally but still involved with graduate student and other research. He is especially active with problems and potential solutions concerning Indo-Pacific humpback dolphins, Sousa chinensis, in and surrounding waters of Hong Kong.

<span class="mw-page-title-main">Gordon Eugene Martin</span> American physicist (born 1925)

Gordon Eugene Martin is an American physicist and author in the field of piezoelectric materials for underwater sound transducers. He wrote early computer software automating iterative evaluation of direct computer models through a Jacobian matrix of complex numbers. His software enabled the Navy Electronics Laboratory (NEL) to accelerate design of sonar arrays for tracking Soviet Navy submarines during the Cold War.

<span class="mw-page-title-main">JASCO Applied Sciences</span>

JASCO Applied Sciences provides scientific consulting services and equipment related to underwater acoustics. JASCO operates from 7 international locations and provides services to the oil and gas, marine construction, energy, renewable energy, fisheries, maritime transport and defence sectors. The head office is located in Halifax, NS Canada. JASCO employs acousticians, bioacousticians, physicists, marine mammal scientists, engineers, technologists, and project managers.

<span class="mw-page-title-main">Timothy Leighton</span> Professor of Ultrasonics and Underwater Acoustics

Timothy Grant Leighton is the Professor of Ultrasonics and Underwater Acoustics at the University of Southampton. He is the inventor-in-chief of Sloan Water Technology Ltd., a company founded around his inventions. He is an academician of three national academies. Trained in physics and theoretical physics, he works across physical, medical, biological, social and ocean sciences, fluid dynamics and engineering. He joined the Institute of Sound and Vibration Research (ISVR) at the University of Southampton in 1992 as a lecturer in underwater acoustics, and completed the monograph The Acoustic Bubble in the same year. He was awarded a personal chair at the age of 35 and has authored over 400 publications.

Bertel Møhl was a Danish marine zoologist and physiologist. He contributed significantly to the understanding of auditory physiology and bioacoustics of bats and marine mammals.

<span class="mw-page-title-main">Christine Erbe</span> German-Australian physicist

Christine Erbe is a German-Australian physicist specializing in underwater acoustics. She is a professor in the School of Earth and Planetary Sciences and director of the Centre for Marine Science and Technology (CMST)—both at Curtin University in Perth, Western Australia, Australia. Erbe is known for her research on acoustic masking in marine mammals, investigating how man-made underwater noise interferes with animal acoustic communication.

References

  1. 1 2 Würsig, B.; Greene, C.R.; Jefferson, T.A. (February 2000). "Development of an air bubble curtain to reduce underwater noise of percussive piling". Marine Environmental Research. 49 (1): 79–93. doi:10.1016/S0141-1136(99)00050-1. PMID   11444016.
  2. "Archived copy" (PDF). Archived (PDF) from the original on 2010-07-05. Retrieved 2012-05-06.{{cite web}}: CS1 maint: archived copy as title (link)
  3. 1 2 3 Dähne, M; Tougaard, J; Carstensen, J; Rose, A; Nabe-Nielsen, J (29 September 2017). "Bubble curtains attenuate noise from offshore wind farm construction and reduce temporary habitat loss for harbour porpoises". Marine Ecology Progress Series. 580: 221–237. Bibcode:2017MEPS..580..221D. doi: 10.3354/meps12257 .
  4. "Hydrotechnik Lübeck - Pneumatic Oil / Bubble Barriers". Archived from the original on 2009-03-02. Retrieved 2009-02-26.
  5. "5.2". Archived from the original on 2005-10-26. Retrieved 2009-02-26.
  6. Abraham, G.; Van der Burg, P.; De Vos, P. (1973). "Pneumatic barriers to reduce salt intrusion through locks". Rijkswaterstaat Communications 17. RWS-Communications. The Hague, Netherlands: Rijkswaterstaat. 17.
  7. http://yosemite.epa.gov/R10/CLEANUP.NSF/ph/gasco+photo+gallery! OpenDocument&ExpandSection=1 Archived 2009-05-20 at the Wayback Machine
  8. "Welcome to PET Discounters - PETdiscounters.com". www.petdiscounters.com. Archived from the original on September 10, 2012.
  9. TEGNA. "10News WTSP - Tampa News, Florida News, Weather, Traffic - WTSP.com". 10NEWS. Archived from the original on November 24, 2016. Retrieved February 5, 2018.
  10. "Bubble Curtain" (PDF). Archived from the original (PDF) on 2011-07-06. Retrieved 2009-02-26.
  11. Tougaard, Jakob; Dähne, Michael (October 2017). "Why is auditory frequency weighting so important in regulation of underwater noise?". The Journal of the Acoustical Society of America. 142 (4): EL415–EL420. Bibcode:2017ASAJ..142L.415T. doi: 10.1121/1.5008901 . PMID   29092598. S2CID   12449068.
  12. Brandt, Mj; Dragon, Ac; Diederichs, A; Bellmann, Ma; Wahl, V; Piper, W; Nabe-Nielsen, J; Nehls, G (28 May 2018). "Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany". Marine Ecology Progress Series. 596: 213–232. Bibcode:2018MEPS..596..213B. doi:10.3354/meps12560.
  13. Tougaard, Jakob; Carstensen, Jacob; Teilmann, Jonas; Skov, Henrik; Rasmussen, Per (July 2009). "Pile driving zone of responsiveness extends beyond 20 km for harbor porpoises ( Phocoena phocoena (L.))". The Journal of the Acoustical Society of America. 126 (1): 11–14. Bibcode:2009ASAJ..126...11T. doi:10.1121/1.3132523. PMID   19603857.