Bullet Galaxy

Last updated
Bullet Galaxy
1e0657 scale.jpg
Bullet Cluster
Observation data (J2000.0 epoch)
Right ascension 23h 59.3m
Declination −60° 42
Redshift 0.096
Distance 1.3  Gly (400  Mpc)
Group or cluster ACO 4096
Other designations
Bullet Galaxy, RXC  J2359.3-6042 CC, ACO  4067 CC, Abell  4067 CC, A  4067 CC

The Bullet Galaxy (RXC J2359.3-6042 CC) is a galaxy in the galaxy cluster RXC J2359.3-6042 (Abell 4067 or ACO 4067). The Bullet Galaxy is the sole component of one half of a cluster merger between the bulk of the cluster and this galaxy, which is plowing through the cluster, similar to how merging clusters Bullet Cluster and Bullet Group have merged. Unlike those two mergers, the Bullet Galaxy's merger is between one galaxy and a galaxy cluster. The cluster merger is happening at a lower speed than the Bullet Cluster, thus allowing the core of the Bullet Galaxy to retain cool gas and remain relatively undisturbed by its passage through the larger cluster. This cluster merger is the first one observed between a single galaxy and a cluster. The galaxy and cluster lies at redshift z=0.0992, some 1.4×109  ly (4.3×108  pc ) away. The galaxy is traveling through the cluster at a speed of 1,310  km/s (2,900,000  mph ). [1] [2] [3] [4]

By studying this unique merging researchers can gain insight on dark matter, and how it interacts with other objects in space. According to astrophysicists James Bullock, "Galaxy clusters that are merging with each other represent interesting laboratories for this kind of question,” when he was speaking of dark matter and the Bullet cluster.

Bullet Cluster

Image of Bullet Cluster Bullet Cluster.jpg
Image of Bullet Cluster

The Bullet Cluster (1E 0657-558) consists of two colliding clusters of galaxies. Strictly speaking, the name Bullet Cluster refers to the smaller sub cluster, moving away from the larger one. It is at a co-moving radial distance of 1.141 Gpc (3.7 billion light-years). Gravitational lensing studies of the Bullet Cluster are claimed to provide the best evidence to date for the existence of dark matter. Observations of other galaxy cluster collisions, such as MACS J0025.4-1222, are similarly claimed to support the existence of dark matter. [5]

Related Research Articles

In astronomy, dark matter is a hypothetical form of matter that appears to not interact with light or the electromagnetic field. Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be seen, which include: formation and evolution of galaxies, gravitational lensing, observable universe's current structure, mass position in galactic collisions, motion of galaxies within galaxy clusters, and cosmic microwave background anisotropies.

The study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. Galaxy formation is hypothesized to occur from structure formation theories, as a result of tiny quantum fluctuations in the aftermath of the Big Bang. The simplest model in general agreement with observed phenomena is the Lambda-CDM model—that is, that clustering and merging allows galaxies to accumulate mass, determining both their shape and structure. Hydrodynamics simulation, which simulates both baryons and dark matter, is widely used to study galaxy formation and evolution.

<span class="mw-page-title-main">Galaxy</span> Large gravitationally bound system of stars and interstellar matter

A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek galaxias (γαλαξίας), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. Galaxies, averaging an estimated 100 million stars, range in size from dwarfs with less than a hundred million stars, to the largest galaxies known – supergiants with one hundred trillion stars, each orbiting its galaxy's center of mass. Most of the mass in a typical galaxy is in the form of dark matter, with only a few percent of that mass visible in the form of stars and nebulae. Supermassive black holes are a common feature at the centres of galaxies.

<span class="mw-page-title-main">Galaxy groups and clusters</span> Largest known gravitationally bound object in universe; aggregation of galaxies

Galaxy groups and clusters are the largest known gravitationally bound objects to have arisen thus far in the process of cosmic structure formation. They form the densest part of the large-scale structure of the Universe. In models for the gravitational formation of structure with cold dark matter, the smallest structures collapse first and eventually build the largest structures, clusters of galaxies. Clusters are then formed relatively recently between 10 billion years ago and now. Groups and clusters may contain ten to thousands of individual galaxies. The clusters themselves are often associated with larger, non-gravitationally bound, groups called superclusters.

<span class="mw-page-title-main">Galaxy cluster</span> Structure made up of a gravitationally-bound aggregation of hundreds of galaxies

A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-largest known gravitationally bound structures in the universe after some superclusters (of which only one is known to be bound). They were believed to be the largest known structures in the universe until the 1980s, when superclusters were discovered. One of the key features of clusters is the intracluster medium (ICM). The ICM consists of heated gas between the galaxies and has a peak temperature between 2–15 keV that is dependent on the total mass of the cluster. Galaxy clusters should not be confused with galactic clusters (also known as open clusters), which are star clusters within galaxies, or with globular clusters, which typically orbit galaxies. Small aggregates of galaxies are referred to as galaxy groups rather than clusters of galaxies. The galaxy groups and clusters can themselves cluster together to form superclusters.

A galactic halo is an extended, roughly spherical component of a galaxy which extends beyond the main, visible component. Several distinct components of a galaxy comprise its halo:

A dark galaxy is a hypothesized galaxy with no stars. They received their name because they have no visible stars but may be detectable if they contain significant amounts of gas. Astronomers have long theorized the existence of dark galaxies, but there are no confirmed examples to date. Dark galaxies are distinct from intergalactic gas clouds caused by galactic tidal interactions, since these gas clouds do not contain dark matter, so they do not technically qualify as galaxies. Distinguishing between intergalactic gas clouds and galaxies is difficult; most candidate dark galaxies turn out to be tidal gas clouds. The best candidate dark galaxies to date include HI1225+01, AGC229385, and numerous gas clouds detected in studies of quasars.

<span class="mw-page-title-main">Interacting galaxy</span> Galaxies with interacting gravitational fields

Interacting galaxies are galaxies whose gravitational fields result in a disturbance of one another. An example of a minor interaction is a satellite galaxy disturbing the primary galaxy's spiral arms. An example of a major interaction is a galactic collision, which may lead to a galaxy merger.

<span class="mw-page-title-main">Bullet Cluster</span> Two colliding clusters of galaxies in constellation Carina

The Bullet Cluster consists of two colliding clusters of galaxies. Strictly speaking, the name Bullet Cluster refers to the smaller subcluster, moving away from the larger one. It is at a comoving radial distance of 1.141 Gpc.

<span class="mw-page-title-main">Galaxy merger</span> Merger whereby at least two galaxies collide

Galaxy mergers can occur when two galaxies collide. They are the most violent type of galaxy interaction. The gravitational interactions between galaxies and the friction between the gas and dust have major effects on the galaxies involved. The exact effects of such mergers depend on a wide variety of parameters such as collision angles, speeds, and relative size/composition, and are currently an extremely active area of research. Galaxy mergers are important because the merger rate is a fundamental measurement of galaxy evolution. The merger rate also provides astronomers with clues about how galaxies bulked up over time.

An inhomogeneous cosmology is a physical cosmological theory which, unlike the currently widely accepted cosmological concordance model, assumes that inhomogeneities in the distribution of matter across the universe affect local gravitational forces enough to skew our view of the Universe. When the universe began, matter was distributed homogeneously, but over billions of years, galaxies, clusters of galaxies, and superclusters have coalesced, and must, according to Einstein's theory of general relativity, warp the space-time around them. While the concordance model acknowledges this fact, it assumes that such inhomogeneities are not sufficient to affect large-scale averages of gravity in our observations. When two separate studies claimed in 1998-1999 that high redshift supernovae were further away than our calculations showed they should be, it was suggested that the expansion of the universe is accelerating, and dark energy, a repulsive energy inherent in space, was proposed to explain the acceleration. Dark energy has since become widely accepted, but it remains unexplained. Accordingly, some scientists continue to work on models that might not require dark energy. Inhomogeneous cosmology falls into this class.

<span class="mw-page-title-main">Abell 520</span> Galaxy cluster in the constellation of Orion

Abell 520 is a galaxy cluster in the Orion constellation, located at a co-moving radial distance of 811 Mpc (2,645 Mly) and subtends 25 arcminutes on the Earth sky.

In astrophysics, dark flow is a theoretical non-random component of the peculiar velocity of galaxy clusters. The actual measured velocity is the sum of the velocity predicted by Hubble's Law plus a possible small and unexplained velocity flowing in a common direction.

<span class="mw-page-title-main">MACS J0025.4-1222</span> Galaxy cluster

MACS J0025.4-1222 is a galaxy cluster created by the collision of two galaxy clusters, and is part of the MAssive Cluster Survey (MACS). Like the earlier discovered Bullet Cluster, this cluster shows a clear separation between the centroid of the intergalactic gas and the colliding clusters.

<span class="mw-page-title-main">Abell 2142</span> Galaxy cluster in the constellation Corona Borealis

Abell 2142, or A2142, is a huge, X-ray luminous galaxy cluster in the constellation Corona Borealis. It is the result of a still ongoing merger between two galaxy clusters. The combined cluster is six million light years across, contains hundreds of galaxies and enough gas to make a thousand more. It is "one of the most massive objects in the universe."

<span class="mw-page-title-main">Intergalactic star</span> Star not gravitationally bound to any galaxy

An intergalactic star, also known as an intracluster star or a rogue star, is a star not gravitationally bound to any galaxy. Although a source of much discussion in the scientific community during the late 1990s, intergalactic stars are now generally thought to have originated in galaxies, like other stars, before being expelled as the result of either galaxies colliding or of a multiple-star system traveling too close to a supermassive black hole, which are found at the center of many galaxies.

The Bullet Group is a newly merging group of galaxies, a merger between two galaxy groups to form a new larger one, that recently had a high speed collision between the two component groups. The group exhibits separation between its dark matter and baryonic matter components. The galaxies occur in two clumps, while the gas has expanded into a billowing cloud encompassing all three clumps. As of 2014, it is one of the few galaxy clusters known to show separation between the dark matter and baryonic matter components. The group is named after the Bullet Cluster, a similar merging galaxy cluster, except on a smaller scale, being of groups instead of clusters. The bimodal distribution of galaxies was found at discovery in 2008. The galaxy group is a gravitational lens and strongly lenses a more distant galaxy behind it, at z=~1.2

<span class="mw-page-title-main">Musket Ball Cluster</span> Collision of two galaxy clusters in the constellation Cancer

The Musket Ball Cluster is a galaxy cluster that exhibits separation between its baryonic matter and dark matter components. The cluster is a recent merger of two galaxy clusters. It is named after the Bullet Cluster, as it is a slower collision, and older than the Bullet Cluster. This cluster is further along the process of merger than the Bullet Cluster, being some 500 million years older, at 700 million years old. The cluster was discovered in 2011 by the Deep Lens Survey. As of 2012, it is one of the few galaxy clusters to show separation between its dark matter and baryonic matter components.

The Eridanus II Dwarf is a low-surface brightness dwarf galaxy in the constellation Eridanus. Eridanus II was independently discovered by two groups in 2015, using data from the Dark Energy Survey. This galaxy is probably a distant satellite of the Milky Way. Li et al., 2016. Eridanus II contains a centrally located globular cluster; and is the smallest, least luminous galaxy known to contain a globular cluster. Crnojević et al., 2016. Eridanus II is significant, in a general sense, because the widely accepted Lambda CDM cosmology predicts the existence of many more dwarf galaxies than have yet been observed. The search for just such bodies was one of the motivations for the ongoing Dark Energy Survey observations. Eridanus II has special significance because of its apparently stable globular cluster. The stability of this cluster, near the center of such a small, diffuse, galaxy places constraints on the nature of dark matter. Brandt 2016.

<span class="mw-page-title-main">NGC 2623</span> Interacting galaxy in the constellation Cancer

NGC 2623/Arp 243 is an interacting galaxy located in the constellation Cancer. NGC 2623 is the result of two spiral galaxies that have merged. Scientists believe that this situation is similar to what will occur to the Milky Way, which contains the Solar System, and the neighboring galaxy, the Andromeda Galaxy in four billion years. Studying this galaxy and its properties have provided scientists with a better idea of the coming collision of the Milky Way and the Andromeda. Due to NGC 2623 being in the late stage of merging, the compression of the gas within the galaxy has led to a large amount of star formation, and to its unique structure of a bright core with two extending tidal tails.

References

  1. George Dvorsky (15 January 2015). "A "Bullet" Galaxy Is Piercing Through Other Galaxies At Ludicrous Speed". io9.
  2. Dan Vergano (16 January 2015). "Astronomers Spy "Bullet" Galaxy Blasting Through Other Galaxies". National Geographic. Archived from the original on January 22, 2015.
  3. Gayoung Chon, Hans Boehringer (10 January 2015). "Witnessing a merging bullet being stripped in the galaxy cluster, RXCJ2359.3-6042". Astronomy & Astrophysics (published February 2015). 574: 5. arXiv: 1501.02371 . Bibcode:2015A&A...574A.132C. doi:10.1051/0004-6361/201425143. S2CID   56378414. A132.
  4. Marisa Lewis (15 January 2015). "'Bullet' Galaxy Hints At Proof Of Dark Matter, Will Help To Answer Questions About Mass Of Distant Galaxies [PHOTO]". KpopStarz.
  5. "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2018-03-20.