Bussgang theorem

Last updated

In mathematics, the Bussgang theorem is a theorem of stochastic analysis. The theorem states that the cross-correlation between a Gaussian signal before and after it has passed through a nonlinear operation are equal to the signals auto-correlation up to a constant. It was first published by Julian J. Bussgang in 1952 while he was at the Massachusetts Institute of Technology. [1]

Contents

Statement

Let be a zero-mean stationary Gaussian random process and where is a nonlinear amplitude distortion.

If is the autocorrelation function of , then the cross-correlation function of and is

where is a constant that depends only on .

It can be further shown that

Derivation for One-bit Quantization

It is a property of the two-dimensional normal distribution that the joint density of and depends only on their covariance and is given explicitly by the expression

where and are standard Gaussian random variables with correlation .

Assume that , the correlation between and is,

.

Since

,

the correlation may be simplified as

.

The integral above is seen to depend only on the distortion characteristic and is independent of .

Remembering that , we observe that for a given distortion characteristic , the ratio is .

Therefore, the correlation can be rewritten in the form

.

The above equation is the mathematical expression of the stated "Bussgang‘s theorem".

If , or called one-bit quantization, then .

[2] [3] [1] [4]

Arcsine law

If the two random variables are both distorted, i.e., , the correlation of and is

.

When , the expression becomes,

where .

Noticing that

,

and , ,

we can simplify the expression of as

Also, it is convenient to introduce the polar coordinate . It is thus found that

.

Integration gives

This is called "Arcsine law", which was first found by J. H. Van Vleck in 1943 and republished in 1966. [2] [3] The "Arcsine law" can also be proved in a simpler way by applying Price's Theorem. [4] [5]

The function can be approximated as when is small.

Price's Theorem

Given two jointly normal random variables and with joint probability function

,

we form the mean

of some function of . If as , then

.

Proof. The joint characteristic function of the random variables and is by definition the integral

.

From the two-dimensional inversion formula of Fourier transform, it follows that

.

Therefore, plugging the expression of into , and differentiating with respect to , we obtain

After repeated integration by parts and using the condition at , we obtain the Price's theorem.

[4] [5]

Proof of Arcsine law by Price's Theorem

If , then where is the Dirac delta function.

Substituting into Price's Theorem, we obtain,

.

When , . Thus

,

which is Van Vleck's well-known result of "Arcsine law".

[2] [3]

Application

This theorem implies that a simplified correlator can be designed.[ clarification needed ] Instead of having to multiply two signals, the cross-correlation problem reduces to the gating[ clarification needed ] of one signal with another.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

<span class="mw-page-title-main">Particle in a spherically symmetric potential</span>

In quantum mechanics, a particle in a spherically symmetric potential is a system with a potential that depends only on the distance between the particle and a center. A particle in a spherically symmetric potential can be used as an approximation, for example, of the electron in a hydrogen atom or of the formation of chemical bonds.

<span class="mw-page-title-main">Stellar dynamics</span>

Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

The Kuramoto model, first proposed by Yoshiki Kuramoto, is a mathematical model used in describing synchronization. More specifically, it is a model for the behavior of a large set of coupled oscillators. Its formulation was motivated by the behavior of systems of chemical and biological oscillators, and it has found widespread applications in areas such as neuroscience and oscillating flame dynamics. Kuramoto was quite surprised when the behavior of some physical systems, namely coupled arrays of Josephson junctions, followed his model.

In probability theory, calculation of the sum of normally distributed random variables is an instance of the arithmetic of random variables.

In physics, spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as  Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential.

The Frank–Tamm formula yields the amount of Cherenkov radiation emitted on a given frequency as a charged particle moves through a medium at superluminal velocity. It is named for Russian physicists Ilya Frank and Igor Tamm who developed the theory of the Cherenkov effect in 1937, for which they were awarded a Nobel Prize in Physics in 1958.

<span class="mw-page-title-main">Radiative transfer equation and diffusion theory for photon transport in biological tissue</span>

Photon transport in biological tissue can be equivalently modeled numerically with Monte Carlo simulations or analytically by the radiative transfer equation (RTE). However, the RTE is difficult to solve without introducing approximations. A common approximation summarized here is the diffusion approximation. Overall, solutions to the diffusion equation for photon transport are more computationally efficient, but less accurate than Monte Carlo simulations.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

An LC circuit can be quantized using the same methods as for the quantum harmonic oscillator. An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency:

<span class="mw-page-title-main">Vibration of plates</span>

The vibration of plates is a special case of the more general problem of mechanical vibrations. The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two. This permits a two-dimensional plate theory to give an excellent approximation to the actual three-dimensional motion of a plate-like object.

The Mehler kernel is a complex-valued function found to be the propagator of the quantum harmonic oscillator.

Multipole radiation is a theoretical framework for the description of electromagnetic or gravitational radiation from time-dependent distributions of distant sources. These tools are applied to physical phenomena which occur at a variety of length scales - from gravitational waves due to galaxy collisions to gamma radiation resulting from nuclear decay. Multipole radiation is analyzed using similar multipole expansion techniques that describe fields from static sources, however there are important differences in the details of the analysis because multipole radiation fields behave quite differently from static fields. This article is primarily concerned with electromagnetic multipole radiation, although the treatment of gravitational waves is similar.

Calculations in the Newman–Penrose (NP) formalism of general relativity normally begin with the construction of a complex null tetrad, where is a pair of real null vectors and is a pair of complex null vectors. These tetrad vectors respect the following normalization and metric conditions assuming the spacetime signature

The Ellis drainhole is the earliest-known complete mathematical model of a traversable wormhole. It is a static, spherically symmetric solution of the Einstein vacuum field equations augmented by inclusion of a scalar field minimally coupled to the geometry of space-time with coupling polarity opposite to the orthodox polarity :

References

  1. 1 2 J.J. Bussgang,"Cross-correlation function of amplitude-distorted Gaussian signals", Res. Lab. Elec., Mas. Inst. Technol., Cambridge MA, Tech. Rep. 216, March 1952.
  2. 1 2 3 Vleck, J. H. Van. "The Spectrum of Clipped Noise". Radio Research Laboratory Report of Harvard University. No. 51.
  3. 1 2 3 Vleck, J. H. Van; Middleton, D. (January 1966). "The spectrum of clipped noise". Proceedings of the IEEE. 54 (1): 2–19. doi:10.1109/PROC.1966.4567. ISSN   1558-2256.
  4. 1 2 3 Price, R. (June 1958). "A useful theorem for nonlinear devices having Gaussian inputs". IRE Transactions on Information Theory. 4 (2): 69–72. doi:10.1109/TIT.1958.1057444. ISSN   2168-2712.
  5. 1 2 Papoulis, Athanasios (2002). Probability, Random Variables, and Stochastic Processes. McGraw-Hill. p. 396. ISBN   0-07-366011-6.

Further reading