CANalyzer

Last updated
CANalyzer
Developer(s) Vector Informatik
Initial release1992;32 years ago (1992)
Stable release
18 SP3 / October 30, 2024;6 days ago (2024-10-30) [1]
Operating system Windows 11, 10, 8.1, 7 [2]
License Proprietary
Website www.vector.com/canalyzer/

CANalyzer is an analysis software tool from Vector Informatik GmbH. This development software is primarily used by automotive and electronic control unit suppliers to analyze the data traffic in serial bus systems. The most relevant bus systems to CANalyzer are CAN, LIN, FlexRay, Ethernet and MOST, [3] as well as CAN-based protocols such as J1939, [4] CANopen, [5] and ARINC 825. [6]

Contents

History

Vector first offered CANalyzer on the market in 1992, and has been continually updating it since then. Today it is a widely used analysis tool for CAN buses. Besides its primary field of application, which is in-vehicle electronic networking in the automotive industry, CANalyzer is also used in many other industries such as rail transportation, heavy-duty vehicles, special-purpose vehicles, avionics, and medical technology. New technologies based on IP architectures in the automotive industry [7] are supported by CANalyzer. [8]

CANalyzer offers bus monitoring, stimulation, and analysis functions for message traffic and data content. It allows users to configure and expand its functionality using an integrated programming language. CANalyzer displays and evaluates data in both raw and symbolic formats, providing a versatile measurement setup.

Back in 1992, Vector had already developed the DBC data format, which has become the de facto standard in the automotive industry for exchanging CAN descriptions. Relevant standards are supported for other bus systems as well, such as FIBEX for FlexRay, LDF for LIN and EDS/DCF/XDD for CANopen. [5]

Versions

CANalyzer version 1.0 was released in 1992. [9] CANalyzer was previously available in three different variants: Professional (PRO), which includes CAPL programming ability, Expert (EXP) which includes panels, and Fundamental (FUN), with basic features. The Fundamental variant has been discontinued as of April 2023. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Embedded system</span> Computer system with a dedicated function

An embedded system is a specialized computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use. In 2009, it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems.

<span class="mw-page-title-main">CAN bus</span> Standard for serial communication between devices without host computer

A controller area network (CAN) is a vehicle bus standard designed to enable efficient communication primarily between electronic control units (ECUs). Originally developed to reduce the complexity and cost of electrical wiring in automobiles through multiplexing, the CAN bus protocol has since been adopted in various other contexts. This broadcast-based, message-oriented protocol ensures data integrity and prioritization through a process called arbitration, allowing the highest priority device to continue transmitting if multiple devices attempt to send data simultaneously, while others back off. Its reliability is enhanced by differential signaling, which mitigates electrical noise. Common versions of the CAN protocol include CAN 2.0, CAN FD, and CAN XL which vary in their data rate capabilities and maximum data payload sizes.

A vehicle bus is a specialized internal communications network that interconnects components inside a vehicle. In electronics, a bus is simply a device that connects multiple electrical or electronic devices together. Special requirements for vehicle control such as assurance of message delivery, of non-conflicting messages, of minimum time of delivery, of low cost, and of EMF noise resilience, as well as redundant routing and other characteristics mandate the use of less common networking protocols. Protocols include Controller Area Network (CAN), Local Interconnect Network (LIN) and others. Conventional computer networking technologies are rarely used, except in aircraft, where implementations of the ARINC 664 such as the Avionics Full-Duplex Switched Ethernet are used. Aircraft that use Avionics Full-Duplex Switched Ethernet (AFDX) include the Boeing 787, the Airbus A400M and the Airbus A380. Trains commonly use Ethernet Consist Network (ECN). All cars sold in the United States since 1996 are required to have an On-Board Diagnostics connector, for access to the car's electronic controllers.

Society of Automotive Engineers standard SAE J1939 is the vehicle bus recommended practice used for communication and diagnostics among vehicle components. Originating in the car and heavy-duty truck industry in the United States, it is now widely used in other parts of the world.

Nucleus RTOS is a real-time operating system (RTOS) produced by the Embedded Software Division of Mentor Graphics, a Siemens Business, supporting 32- and 64-bit embedded system platforms. The operating system (OS) is designed for real-time embedded systems for medical, industrial, consumer, aerospace, and Internet of things (IoT) uses. Nucleus was released first in 1993. The latest version is 3.x, and includes features such as power management, process model, 64-bit support, safety certification, and support for heterogeneous computing multi-core system on a chip (SOCs) processors.

<span class="mw-page-title-main">Industrial Ethernet</span> Use of Ethernet in an industrial environment

Industrial Ethernet (IE) is the use of Ethernet in an industrial environment with protocols that provide determinism and real-time control. Protocols for industrial Ethernet include EtherCAT, EtherNet/IP, PROFINET, POWERLINK, SERCOS III, CC-Link IE, and Modbus TCP. Many industrial Ethernet protocols use a modified media access control (MAC) layer to provide low latency and determinism. Some microprocessors provide industrial Ethernet support.

Avionics Full-Duplex Switched Ethernet (AFDX), also ARINC 664, is a data network, patented by international aircraft manufacturer Airbus, for safety-critical applications that utilizes dedicated bandwidth while providing deterministic quality of service (QoS). AFDX is a worldwide registered trademark by Airbus. The AFDX data network is based on Ethernet technology using commercial off-the-shelf (COTS) components. The AFDX data network is a specific implementation of ARINC Specification 664 Part 7, a profiled version of an IEEE 802.3 network per parts 1 & 2, which defines how commercial off-the-shelf networking components will be used for future generation Aircraft Data Networks (ADN). The six primary aspects of an AFDX data network include full duplex, redundancy, determinism, high speed performance, switched and profiled network.

CANopen is a communication protocol stack and device profile specification for embedded systems used in automation. In terms of the OSI model, CANopen implements the layers above and including the network layer. The CANopen standard consists of an addressing scheme, several small communication protocols and an application layer defined by a device profile. The communication protocols have support for network management, device monitoring and communication between nodes, including a simple transport layer for message segmentation/desegmentation. The lower level protocol implementing the data link and physical layers is usually Controller Area Network (CAN), although devices using some other means of communication can also implement the CANopen device profile.

EtherCAT is an Ethernet-based fieldbus system developed by Beckhoff Automation. The protocol is standardized in IEC 61158 and is suitable for both hard and soft real-time computing requirements in automation technology.

Tolapai is the code name of Intel's embedded system on a chip (SoC) which combines a Pentium M (Dothan) processor core, DDR2 memory controllers and input/output (I/O) controllers, and a QuickAssist integrated accelerator unit for security functions.

The Time-Triggered Ethernet standard defines a fault-tolerant synchronization strategy for building and maintaining synchronized time in Ethernet networks, and outlines mechanisms required for synchronous time-triggered packet switching for critical integrated applications and integrated modular avionics (IMA) architectures. SAE International released SAE AS6802 in November 2011.

<span class="mw-page-title-main">Vector Informatik</span>

Vector Informatik develops software tools and components for networking of electronic systems based on the serial bus systems CAN, LIN, FlexRay, MOST, Ethernet, AFDX, ARINC 429, and SAE J1708 as well as on CAN-based protocols such as SAE J1939, SAE J1587, ISO 11783, NMEA 2000, ARINC 825, CANaerospace, CANopen and more. The headquarters of the company Vector Informatik GmbH is in Stuttgart, Germany. Subsidiaries include Braunschweig, Munich, Hamburg, Regensburg along with international subsidiaries in Brazil, China, France, Italy, England, India, Japan, South Korea, Austria, Sweden, and the USA. Vector Informatik also includes Vector Consulting Services GmbH, a consultation firm specializing in optimization of technical product development. Altogether, these companies are referred to as the Vector Group.

<span class="mw-page-title-main">CANape</span> Software tool by Vector Informatik

CANape is a software tool from Vector Informatik. This development software, widely used by OEMs and ECU suppliers of automotive industries is used to calibrate algorithms in ECUs at runtime.

CANoe is a development and testing software tool from Vector Informatik GmbH. The software is primarily used by automotive manufacturers and electronic control unit (ECU) suppliers for development, analysis, simulation, testing, diagnostics and start-up of ECU networks and individual ECUs. Its widespread use and large number of supported vehicle bus systems makes it especially well suited for ECU development in conventional vehicles, as well as hybrid vehicles and electric vehicles. The simulation and testing facilities in CANoe are performed with CAPL, a programming language.

ETAS GmbH is a German company which designs tools for the development of embedded systems for the automotive industry and other sectors of the embedded industry. ETAS is 100% owned by Robert Bosch GmbH.

The train communication network (TCN) is a hierarchical combination of two fieldbus networks for data transmission within trains. It consists of the Multifunction Vehicle Bus (MVB) inside each vehicle and of the Wire Train Bus (WTB) to connect the different vehicles. The TCN components have been standardized in IEC 61375.

Avnu Alliance is a consortium of member companies working together to create an interoperable ecosystem of low-latency, time-synchronized, highly reliable networking devices using the IEEE open standard, Time-Sensitive Networking (TSN) and its Pro AV networking protocol, Milan. Avnu Alliance creates comprehensive certification programs to ensure interoperability of network devices. In the Professional Audio Video (AV) industry, Alliance member companies worked together to develop Milan: a standards-based, user-driven deterministic network protocol for professional media, that through certification, assures devices will work together at new levels of convenience, reliability, and functionality. Milan™ is a standards-based deterministic network protocol for real time media. Avnu Members may use the Avnu-certified or Milan-certified logo on devices that pass the conformance tests from Avnu. Not every device based on AVB or TSN is submitted for certification to the Avnu Alliance. The lack of the Avnu logo does not necessarily imply a device is incompatible with other Avnu-certified devices. The Alliance, in conjunction with other complimentary standards bodies and alliances, provides a united network foundation for use in professional AV, automotive, industrial control and consumer segments.

<span class="mw-page-title-main">VisualSim Architect</span> Electronic system modeling and simulation software

VisualSim Architect is an electronic system-level software for modeling and simulation of electronic systems, embedded software, and semiconductors. VisualSim Architect is a commercial version of the Ptolemy II research project at the University of California Berkeley. The product was first released in 2003. VisualSim is a graphical tool that can be used for performance trade-off analyses using such metrics as bandwidth utilization, application response time, and buffer requirements. It can be used for architectural analysis of algorithms, components, software instructions, and hardware/software partitioning.

<span class="mw-page-title-main">Cyphal</span>

Cyphal is a lightweight protocol designed for reliable intra-vehicle communications using various communications transports, originally destined for CAN bus, but targeting various network types in subsequent revisions. OpenCyphal is an open-source project that aims to provide MIT-licensed implementations of the Cyphal protocol. The project was known as UAVCAN prior to rebranding in March 2022.

References

  1. "CANalyzer 18 SP3 Release Notes". Vector. Retrieved 4 Nov 2024.
  2. "Operating Systems Supported by Vector Products". Vector KB. Retrieved 4 Nov 2024.
  3. CANalyzer Website Archived 2010-12-11 at the Wayback Machine , downloaded November 3rd, 2011
  4. CANalyzer.J1939 Archived 2012-01-07 at the Wayback Machine , downloaded November 3rd, 2011
  5. 1 2 CANopen solutions Archived 2018-10-04 at the Wayback Machine , downloaded November 3rd, 2011
  6. Overview CAN-based avionics protocols on www.avionics-networking.com Archived 2019-04-26 at the Wayback Machine , downloaded June 17th, 2010
  7. Neff, Dr.Matheus, Königseder (BMW), Singer (Freescale), Wagner (Broadcom): Ethernet & IP as Automotive Bus System in the Scenario of Camera-based Advanced Driver Assistance Systems in VDI-Reports 2132, 15.International Congress Electronic Systems for Motor Vehicles, Baden-Baden 2011, ISBN   978-3-18-092132-7.
  8. CANalyzer.IP Archived 2011-11-29 at the Wayback Machine , downloaded November 3rd, 2011
  9. "Company History Vector". Archived from the original on 2015-11-28. Retrieved 2014-06-04.
  10. "CANalyzer Variants". Archived from the original on 2022-12-20. Retrieved 2023-04-19.

Additional resources

Networking with CAN and CANopen, RTC Books San Clemente, USA, 2003 (eng)

  • Pfeiffer, Ayre, Keydel: Embedded Networking with CAN and CANopen, RTC Books, Japan, 2006 (jap)