CHREST (Chunk Hierarchy and REtrieval STructures) is a symbolic cognitive architecture based on the concepts of limited attention, limited short-term memories, and chunking. The architecture takes into low-level aspects of cognition such as reference perception, long and short-term memory stores, and methodology of problem-solving [1] and high-level aspects such as the use of strategies. [2] Learning, which is essential in the architecture, is modelled as the development of a network of nodes (chunks) which are connected in various ways. This can be contrasted with Soar and ACT-R, two other cognitive architectures, which use productions for representing knowledge. CHREST has often been used to model learning using large corpora of stimuli representative of the domain, such as chess games for the simulation of chess expertise or child-directed speech for the simulation of children's development of language. In this respect, the simulations carried out with CHREST have a flavour closer to those carried out with connectionist models than with traditional symbolic models.
CHREST stores its memories in a chunking network, a tree-like structure that connects and stores knowledge and information acquired, allowing for greater efficiency in information processing. [3] [2] Figure 1 highlights the links between perceived knowledge, memory, and acquired experiences that are formed based on “familiar patterns” [2] between new and old information.
CHREST is developed by Fernand Gobet at Brunel University and Peter C. Lane at the University of Hertfordshire. It is the successor of EPAM, a cognitive model originally developed by Herbert A. Simon and Edward Feigenbaum.
The architecture contains a number of capacity parameters (e.g., capacity of visual short-term memory, set at three chunks) and time parameters (e.g., time to learn a chunk or time to put information into short-term memory). This makes it possible to derive precise and quantitative predictions about human behaviour.
The model includes interaction with elements in the external world, short-term and long-term memory stores, in particular visual and verbal memory storage, and the individual's mechanisms with problem-solving. [4] Chunks in CHREST are referenced in short-term memory while being held in long-term memory, often recognised through neural categorial perception involving discrimination. [5] In much similarity to EPAM, chunks in cognition learning in long-term memory are acquired as a “network of nodes”, [5] and are interconnected by the similarity of their contents and are depicted as a discrimination network, storing and sorting chunks in the network. Chunks are essentially “clusters of information that can be used as units of perception”, [1] thus when applied in situations of chess play, fragments and sections of chess positions will be used as the stimuli fed to the system. [5] According to Gobet et al. and Smith et al., cognitive templates, or better known as schemas, form when chunks adapt based on recurring environmental patterns and structures. [1] [4] Templates are cognitive structures that represent environmental perception, allowing for cognitive organisation, recall, behavioural guidance, situational prediction and overall understanding. [6] Each template has slots where values can be “slotted in”, which allows for faster understanding when faced with similar information already existing in the template. [6] [7]
Simulations are carried out by allowing the model to acquire knowledge by receiving stimuli representative of the domain under study. For example, during the learning phase of the chess simulations, the program incrementally acquires chunks and templates by scanning a large database of positions taken from master-level games. [8] This makes it possible to create networks of various sizes, and so to simulate the behaviour of players of different skill levels. [8] [9] Taken together with the presence of time and capacity parameters, this enables CHREST to make unambiguous and quantitative predictions. [4]
CHREST's notability lies in the significance placed on the perception process. The procedure of perception and information processing is passive, leading to complex emergent behaviour where the secondary acquisition process is led and directed by pre-existing knowledge. [4] This phenomenon is closely observed in chess experiments, where perception and eye movements are closely associated, while also being proportionate to attention span. [2] [4] This process is governed by the chunks held in heuristics and memory . [3] In the case of chess experiments, perception is equated with eye movements (which are approximately correspondent to attention), which are directed by chunks held in memory and heuristics . [3] [4]
Models based on CHREST have been used, among other things, to simulate data on the acquisition of chess expertise from novice to grandmaster, children's acquisition of vocabulary, children's acquisition of syntactic structures, and concept formation.
A glaring limitation of the CHREST theory is as proposed by Herbert Simon. Simon concluded models that attempted to simulate functioning cognition in humans must not assume properties that may be unrealistic for a human, thus the CHREST model is limited by the parameters of human abilities understood to the current extent of cognitive psychology. [10] Moreover, an over-focus on problem-solving and strategy has led to information categorisation, attention, and understanding of the stimulus being ignored. [9] [11]
Time-restricted puzzles are simulated using a set of regulated parameters that are assumed to be closest to human behaviour. [8] [10] Time-related variables are commonly used in CHREST and its subsequent simulations, such as the main limiting factor of visual short-term memory being restricted. [4] [10] The algorithm takes into account the typical time spent when simulating a specific action, such as mentally calculating each position, and “increments the internal clock of the algorithm by the amount of time used”. [4] [2] As such, the parameters set out, such as the time constraint, result in time-restricted problems to be simulated to an extent, limited by “available and simulated resources”. [9] [10]
Additionally, extensive research conducted by Woollett and Maguire revealed that through acquiring expertise, such as in the case of London's taxi drivers, “structural plasticity in the hippocampus” [12] [13] is developed, creating “permanent changes in the brain” [13] such as the expansion of the posterior hippocampal region relative to the average population. [12] [14] This change is achieved through memorisation and navigation of complicated routes and maps of London's urban area, [13] leading to a rigid pattern of cognitive chunks that results in resistance to sudden modifications, as well as the development of “practised habits”. [13] [14] In the face of unfamiliar circumstances, the individual may depend on existing patterns and strategies despite if the knowledge may not be applicable. [12] [14] The plasticity of the information processing centre in the brain leads to potential “blind spots” [13] when faced with situations that require visualisation external of preexisting patterns. [14] [13] [12]
The chess domain has long been a standardised testing protocol for studies involving perception, psychology, cognition, and human and artificial intelligence. [4] [15] The comprehensive use of chess play and chess mechanisms has been compared to the metaphor of the use of ‘drosophila’, the “organism of choice” [15] for research in biological and chemical industries. Similarities between the domination of chess used as an experimental hotbed in the field of cognitive and computer sciences and the use of drosophila in genetic sciences research have been drawn up as chess has notably been identified as a “representative measure” [15] of cognition and intelligence in both humans and computers. [16] [15]
Common applications and simulations of the CHREST theory have been carried out extensively in the past within the context of chess play. [17] [18] The methodology involves allowing the acquisition of knowledge by feeding stimuli within the specialisation of study. [4] In the algorithm's learning phase, chunks and templates from databases containing moves, positions, and strategies from grandmaster and expert level games are gradually fed and synthesised as knowledge. [4] [8] Varying networks of nodes (or chunks) of different sizes are then created, which allows for simulations of chess play across diverse levels of skill. [8] [3] Parameters of time and human capacity are taken into account, thus ideally creating circumstances where CHREST is able to quantitatively predict unambiguous outcomes [5] [19] [20] (Gobet and Lane; Gobet).
Additional research credited to Adriaan de Groot and Herbert Simon specifically in the domain of chess accounted for significant quantities of psychological data, with a strong focus on the memory of chess players. [3] [8] Prior to de Groot and Simon's theories and implementation, the standard paradigm for experimentation in chess play and chess research typically consists of illustrating a chess position to a subject for a short period of time, usually for 5 seconds, then asking subjects to recreate the position. [4] Common independent variables in this methodology are the skill level of the subject, time spent illustrating the position, and the general depth and significance of the position. [4]
In the domain of perception, simulations of eye movement during the initial 5 seconds of illustrating a chess position, as well as recognition of templates and chunks have been completed using CHREST. [3] CHREST also accounts for the outcome when presented with varying modifications and randomisation of positions, the significance of time spent illustrating and presenting each position, and the categorisation of the errors made and chunks replaced in the network across varying skill levels from novice-level players to grandmasters. [4]
Extensive research has been conducted by N Charness on chess and general expertise, problem-solving strategies and memorisation by population groups of different ages. [21] Tests for memorisation and recall revealed that younger players performed better relative to older players when presented with varying chess positions. [21] Charness noted that though older players performed worse relative to younger players when both parties were on the same level, the skill level of older players equalled that of younger players in strategy-based tasks that required the player to select the best play within a time constraint, where older players outpaced younger players. [4] [21] The legitimate interpretation of Charness’ experiment is refuted by Retschitzki et al., who identify key issues in Charness’ methodology that leads to an inaccurate conclusion. [22] Retschitzki et al. suggest the decline of the skill level of the older players as a consequence of reaching and passing their peak, [22] and explicit comparison to a younger age group was complicated due to “prior learning and past experiences”, [23] also referred to as “crystallised intelligence”. [23]
Prior to de Groot and Simon's theories and implementation, the standard paradigm for experimentation in chess play and chess research typically consists of illustrating a chess position to a subject for a short period of time, usually for 5 seconds, then asking subjects to recreate the position. [20] Common independent variables in this methodology are the skill level of the subject, time spent illustrating the position, and the general depth and significance of the position. [4] Though this methodology has generated a substantial amount of high-level models addressing memory and cognition in chess play, exampled by the works of Dennis Holding, there remains a scarcity of models that further detail memory use in chess, with the exemption of MAPP developed by Chase and Simon, later implemented by Simon and Gilmartin. [8]
Cognitive science is the interdisciplinary, scientific study of the mind and its processes. It examines the nature, the tasks, and the functions of cognition. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."
Cognitive psychology is the scientific study of mental processes such as attention, language use, memory, perception, problem solving, creativity, and reasoning.
An expert is somebody who has a broad and deep understanding and competence in terms of knowledge, skill and experience through practice and education in a particular field or area of study. Informally, an expert is someone widely recognized as a reliable source of technique or skill whose faculty for judging or deciding rightly, justly, or wisely is accorded authority and status by peers or the public in a specific well-distinguished domain. An expert, more generally, is a person with extensive knowledge or ability based on research, experience, or occupation and in a particular area of study. Experts are called in for advice on their respective subject, but they do not always agree on the particulars of a field of study. An expert can be believed, by virtue of credentials, training, education, profession, publication or experience, to have special knowledge of a subject beyond that of the average person, sufficient that others may officially rely upon the individual's opinion on that topic. Historically, an expert was referred to as a sage. The individual was usually a profound thinker distinguished for wisdom and sound judgment.
Herbert Alexander Simon was an American political scientist whose work also influenced the fields of computer science, economics, and cognitive psychology. His primary research interest was decision-making within organizations and he is best known for the theories of "bounded rationality" and "satisficing". He received the Nobel Memorial Prize in Economic Sciences in 1978 and the Turing Award in computer science in 1975. His research was noted for its interdisciplinary nature, spanning the fields of cognitive science, computer science, public administration, management, and political science. He was at Carnegie Mellon University for most of his career, from 1949 to 2001, where he helped found the Carnegie Mellon School of Computer Science, one of the first such departments in the world.
Cognition is the "mental action or process of acquiring knowledge and understanding through thought, experience, and the senses". It encompasses all aspects of intellectual functions and processes such as: perception, attention, thought, imagination, intelligence, the formation of knowledge, memory and working memory, judgment and evaluation, reasoning and computation, problem-solving and decision-making, comprehension and production of language. Cognitive processes use existing knowledge to discover new knowledge.
A child prodigy is a person under the age of ten who produces meaningful work in some domain at the level of an adult expert. The term is also applied more broadly to describe young people who are extraordinarily talented in some field.
"The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information" is one of the most highly cited papers in psychology. It was written by the cognitive psychologist George A. Miller of Harvard University's Department of Psychology and published in 1956 in Psychological Review. It is often interpreted to argue that the number of objects an average human can hold in short-term memory is 7 ± 2. This has occasionally been referred to as Miller's law.
Soar is a cognitive architecture, originally created by John Laird, Allen Newell, and Paul Rosenbloom at Carnegie Mellon University.
In cognitive psychology, chunking is a process by which small individual pieces of a set of information are bound together to create a meaningful whole later on in memory. The chunks, by which the information is grouped, are meant to improve short-term retention of the material, thus bypassing the limited capacity of working memory and allowing the working memory to be more efficient. A chunk is a collection of basic units that are strongly associated with one another, and have been grouped together and stored in a person's memory. These chunks can be retrieved easily due to their coherent grouping. It is believed that individuals create higher-order cognitive representations of the items within the chunk. The items are more easily remembered as a group than as the individual items themselves. These chunks can be highly subjective because they rely on an individual's perceptions and past experiences, which are linked to the information set. The size of the chunks generally ranges from two to six items but often differs based on language and culture.
Computational cognition is the study of the computational basis of learning and inference by mathematical modeling, computer simulation, and behavioral experiments. In psychology, it is an approach which develops computational models based on experimental results. It seeks to understand the basis behind the human method of processing of information. Early on computational cognitive scientists sought to bring back and create a scientific form of Brentano's psychology.
Information processing theory is the approach to the study of cognitive development evolved out of the American experimental tradition in psychology. Developmental psychologists who adopt the information processing perspective account for mental development in terms of maturational changes in basic components of a child's mind. The theory is based on the idea that humans process the information they receive, rather than merely responding to stimuli. This perspective uses an analogy to consider how the mind works like a computer. In this way, the mind functions like a biological computer responsible for analyzing information from the environment. According to the standard information-processing model for mental development, the mind's machinery includes attention mechanisms for bringing information in, working memory for actively manipulating information, and long-term memory for passively holding information so that it can be used in the future. This theory addresses how as children grow, their brains likewise mature, leading to advances in their ability to process and respond to the information they received through their senses. The theory emphasizes a continuous pattern of development, in contrast with cognitive-developmental theorists such as Jean Piaget's theory of cognitive development that thought development occurs in stages at a time.
Lawrence W. Barsalou is an American psychologist and a cognitive scientist, currently working at the University of Glasgow.
In mental memory, storage is one of three fundamental stages along with encoding and retrieval. Memory is the process of storing and recalling information that was previously acquired. Storing refers to the process of placing newly acquired information into memory, which is modified in the brain for easier storage. Encoding this information makes the process of retrieval easier for the brain where it can be recalled and brought into conscious thinking. Modern memory psychology differentiates between the two distinct types of memory storage: short-term memory and long-term memory. Several models of memory have been proposed over the past century, some of them suggesting different relationships between short- and long-term memory to account for different ways of storing memory.
EPAM is a psychological theory of learning and memory implemented as a computer program. Originally designed by Herbert A. Simon and Edward Feigenbaum to simulate phenomena in verbal learning, it has been later adapted to account for data on the psychology of expertise and concept formation. It was influential in formalizing the concept of a chunk. In EPAM, learning consists in the growth of a discrimination network. EPAM was written in IPL/V.
Connectionist Learning with Adaptive Rule Induction On-line (CLARION) is a computational cognitive architecture that has been used to simulate many domains and tasks in cognitive psychology and social psychology, as well as implementing intelligent systems in artificial intelligence applications. An important feature of CLARION is the distinction between implicit and explicit processes and focusing on capturing the interaction between these two types of processes. The system was created by the research group led by Ron Sun.
Psi-theory, developed by Dietrich Dörner at the University of Bamberg, is a systemic psychological theory covering human action regulation, intention selection and emotion. It models the human mind as an information processing agent, controlled by a set of basic physiological, social and cognitive drives. Perceptual and cognitive processing are directed and modulated by these drives, which allow the autonomous establishment and pursuit of goals in an open environment.
Embodied cognition is the concept suggesting that many features of cognition are shaped by the state and capacities of the organism. The cognitive features include a wide spectrum of cognitive functions, such as perception biases, memory recall, comprehension and high-level mental constructs and performance on various cognitive tasks. The bodily aspects involve the motor system, the perceptual system, the bodily interactions with the environment (situatedness), and the assumptions about the world built the functional structure of organism's brain and body.
Fernand Gobet is a cognitive scientist and a cognitive psychologist, currently Professor of Cognitive Psychology at the London School of Economics. His research interests focus on the study of cognition, especially in the areas of cognitive architectures, perception, intuition, problem solving, learning and decision making. He has developed the CHREST cognitive architecture, an acronym for Chunk Hierarchy and REtrieval STructures, which is a complete architecture for the processes of learning and perception used by humans. He is a chess International Master, and played numerous times for the Swiss national team. He was co-editor of the Swiss Chess Review from 1981 to 1989. His Elo rating is 2400.
Spatial ability or visuo-spatial ability is the capacity to understand, reason, and remember the visual and spatial relations among objects or space.
{{cite journal}}
: Cite journal requires |journal=
(help)