Caputo fractional derivative

Last updated

In mathematics, the Caputo fractional derivative, also called Caputo-type fractional derivative, is a generalization of derivatives for non-integer orders named after Michele Caputo. Caputo first defined this form of fractional derivative in 1967. [1]

Contents

Motivation

The Caputo fractional derivative is motivated from the Riemann–Liouville fractional integral. Let be continuous on , then the Riemann–Liouville fractional integral states that

where is the Gamma function.

Let's define , say that and that applies. If then we could say . So if is also , then

This is known as the Caputo-type fractional derivative, often written as .

Definition

The first definition of the Caputo-type fractional derivative was given by Caputo as:

where and . [2]

A popular equivalent definition is:

where and is the ceiling function. This can be derived by substituting so that would apply and follows. [3]

Another popular equivalent definition is given by:

where .

The problem with these definitions is that they only allow arguments in . This can be fixed by replacing the lower integral limit with : . The new domain is . [4]

Properties and theorems

Basic properties and theorems

A few basic properties are: [5]

A table of basic properties and theorems
PropertiesCondition
Definition
Linearity
Index law
Semigroup property

Non-commutation

The index law does not always fulfill the property of commutation:

where .

Fractional Leibniz rule

The Leibniz rule for the Caputo fractional derivative is given by:

where is the binomial coefficient. [6] [7]

Relation to other fractional differential operators

Caputo-type fractional derivative is closely related to the Riemann–Liouville fractional integral via its definition:

Furthermore, the following relation applies:

where is the Riemann–Liouville fractional derivative.

Laplace transform

The Laplace transform of the Caputo-type fractional derivative is given by:

where . [8]

Caputo fractional derivative of some functions

The Caputo fractional derivative of a constant is given by:

The Caputo fractional derivative of a power function is given by: [9]

The Caputo fractional derivative of a exponential function is given by:

where is the -function and is the lower incomplete gamma function. [10]

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

<span class="mw-page-title-main">Floor and ceiling functions</span> Nearest integers from a number

In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted x or floor(x). Similarly, the ceiling function maps x to the smallest integer greater than or equal to x, denoted x or ceil(x).

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles, while R is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the reciprocals; The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the triangle is not uniquely determined by this data and the technique gives two possible values for the enclosed angle.

Fractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator

In mathematics, the Riemann–Liouville integral associates with a real function another function Iαf of the same kind for each value of the parameter α > 0. The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, Iαf is an iterated antiderivative of f of order α. The Riemann–Liouville integral is named for Bernhard Riemann and Joseph Liouville, the latter of whom was the first to consider the possibility of fractional calculus in 1832. The operator agrees with the Euler transform, after Leonhard Euler, when applied to analytic functions. It was generalized to arbitrary dimensions by Marcel Riesz, who introduced the Riesz potential.

<span class="mw-page-title-main">Dirichlet distribution</span> Probability distribution

In probability and statistics, the Dirichlet distribution, often denoted , is a family of continuous multivariate probability distributions parameterized by a vector of positive reals. It is a multivariate generalization of the beta distribution, hence its alternative name of multivariate beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution.

<span class="mw-page-title-main">Lambert series</span> Mathematical term

In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form

In the field of mathematics, norms are defined for elements within a vector space. Specifically, when the vector space comprises matrices, such norms are referred to as matrix norms. Matrix norms differ from vector norms in that they must also interact with matrix multiplication.

<span class="mw-page-title-main">Mittag-Leffler function</span> Mathematical function

In mathematics, the Mittag-Leffler function is a special function, a complex function which depends on two complex parameters and . It may be defined by the following series when the real part of is strictly positive:

<span class="mw-page-title-main">Osculating circle</span> Circle of immediate corresponding curvature of a curve at a point

An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.

The Engel expansion of a positive real number x is the unique non-decreasing sequence of positive integers such that

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

<span class="mw-page-title-main">Normal-inverse-gamma distribution</span>

In probability theory and statistics, the normal-inverse-gamma distribution is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

In mathematics, the Fox–Wright function (also known as Fox–Wright Psi function, not to be confused with Wright Omega function) is a generalisation of the generalised hypergeometric function pFq(z) based on ideas of Charles Fox (1928) and E. Maitland Wright (1935):

In applied mathematics and mathematical analysis, the fractal derivative or Hausdorff derivative is a non-Newtonian generalization of the derivative dealing with the measurement of fractals, defined in fractal geometry. Fractal derivatives were created for the study of anomalous diffusion, by which traditional approaches fail to factor in the fractal nature of the media. A fractal measure t is scaled according to tα. Such a derivative is local, in contrast to the similarly applied fractional derivative. Fractal calculus is formulated as a generalization of standard calculus.

In mathematics, Katugampola fractional operators are integral operators that generalize the Riemann–Liouville and the Hadamard fractional operators into a unique form. The Katugampola fractional integral generalizes both the Riemann–Liouville fractional integral and the Hadamard fractional integral into a single form and It is also closely related to the Erdelyi–Kober operator that generalizes the Riemann–Liouville fractional integral. Katugampola fractional derivative has been defined using the Katugampola fractional integral and as with any other fractional differential operator, it also extends the possibility of taking real number powers or complex number powers of the integral and differential operators.

References

  1. Diethelm, Kai (2019). "General theory of Caputo-type fractional differential equations". Fractional Differential Equations. pp. 1–20. doi:10.1515/9783110571660-001. ISBN   978-3-11-057166-0 . Retrieved 2023-08-10.
  2. Caputo, Michele (1967). "Linear Models of Dissipation whose Q is almost Frequency Independent-II". ResearchGate. 13 (5): 530. Bibcode:1967GeoJ...13..529C. doi: 10.1111/j.1365-246X.1967.tb02303.x .
  3. Lazarević, Mihailo; Rapaić, Milan Rade; Šekara, Tomislav (2014). "Introduction to Fractional Calculus with Brief Historical Background". ResearchGate: 8.
  4. Dimitrov, Yuri; Georgiev, Slavi; Todorov, Venelin (2023). "Approximation of Caputo Fractional Derivative and Numerical Solutions of Fractional Differential Equations". Fractal and Fractional. 7 (10): 750. doi: 10.3390/fractalfract7100750 .
  5. Sikora, Beata (2023). "Remarks on the Caputo fractional derivative" (PDF). Matematyka I Informatyka Na Uczelniach Technicznych (5): 78–79.
  6. Huseynov, Ismail; Ahmadova, Arzu; Mahmudov, Nazim (2020). "Fractional Leibniz integral rules for Riemann-Liouville and Caputo fractional derivatives and their applications". ResearchGate: 1. arXiv: 2012.11360 .
  7. Weisstein, Eric W. (2024). "Binomial Coefficient". mathworld.wolfram.com. Retrieved 2024-05-20.
  8. Sontakke, Bhausaheb Rajba; Shaikh, Amjad (2015). "Properties of Caputo Operator and Its Applications to Linear Fractional Differential Equations" (PDF). Journal of Engineering Research and Applications. 5 (5): 23–24. ISSN   2248-9622.
  9. Weisstein, Eric W. "Fractional Derivative". mathworld.wolfram.com. Retrieved 2024-05-20.
  10. Weisstein, Eric W. (2024). "E_t-Function". mathworld.wolfram.com. Retrieved 2024-05-20.

Further reading