Caputo fractional derivative Last updated February 09, 2025 Generalization in fractional calculus
In mathematics , the Caputo fractional derivative , also called Caputo-type fractional derivative, is a generalization of derivatives for non-integer orders named after Michele Caputo. Caputo first defined this form of fractional derivative in 1967. [ 1]
Motivation The Caputo fractional derivative is motivated from the Riemann–Liouville fractional integral . Let f {\textstyle f} be continuous on ( 0 , ∞ ) {\displaystyle \left(0,\,\infty \right)} , then the Riemann–Liouville fractional integral RL I {\textstyle {^{\text{RL}}\operatorname {I} }} states that
0 RL I x α [ f ( x ) ] = 1 Γ ( α ) ⋅ ∫ 0 x f ( t ) ( x − t ) 1 − α d t {\displaystyle {_{0}^{\text{RL}}\operatorname {I} _{x}^{\alpha }}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(\alpha \right)}}\cdot \int \limits _{0}^{x}{\frac {f\left(t\right)}{\left(x-t\right)^{1-\alpha }}}\,\operatorname {d} t}
where Γ ( ⋅ ) {\textstyle \Gamma \left(\cdot \right)} is the Gamma function .
Let's define D x α := d α d x α {\textstyle \operatorname {D} _{x}^{\alpha }:={\frac {\operatorname {d} ^{\alpha }}{\operatorname {d} x^{\alpha }}}} , say that D x α D x β = D x α + β {\textstyle \operatorname {D} _{x}^{\alpha }\operatorname {D} _{x}^{\beta }=\operatorname {D} _{x}^{\alpha +\beta }} and that D x α = RL I x − α {\textstyle \operatorname {D} _{x}^{\alpha }={^{\text{RL}}\operatorname {I} _{x}^{-\alpha }}} applies. If α = m + z ∈ R ∧ m ∈ N 0 ∧ 0 < z < 1 {\textstyle \alpha =m+z\in \mathbb {R} \wedge m\in \mathbb {N} _{0}\wedge 0<z<1} then we could say D x α = D x m + z = D x z + m = D x z − 1 + 1 + m = D x z − 1 D x 1 + m = RL I x 1 − z D x 1 + m {\textstyle \operatorname {D} _{x}^{\alpha }=\operatorname {D} _{x}^{m+z}=\operatorname {D} _{x}^{z+m}=\operatorname {D} _{x}^{z-1+1+m}=\operatorname {D} _{x}^{z-1}\operatorname {D} _{x}^{1+m}={^{\text{RL}}\operatorname {I} }_{x}^{1-z}\operatorname {D} _{x}^{1+m}} . So if f {\displaystyle f} is also C m ( 0 , ∞ ) {\displaystyle C^{m}\left(0,\,\infty \right)} , then
D x m + z [ f ( x ) ] = 1 Γ ( 1 − z ) ⋅ ∫ 0 x f ( 1 + m ) ( t ) ( x − t ) z d t . {\displaystyle {\operatorname {D} _{x}^{m+z}}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(1-z\right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(1+m\right)}\left(t\right)}{\left(x-t\right)^{z}}}\,\operatorname {d} t.}
This is known as the Caputo-type fractional derivative, often written as C D x α {\textstyle {^{\text{C}}\operatorname {D} }_{x}^{\alpha }} .
Definition The first definition of the Caputo-type fractional derivative was given by Caputo as:
C D x m + z [ f ( x ) ] = 1 Γ ( 1 − z ) ⋅ ∫ 0 x f ( m + 1 ) ( t ) ( x − t ) z d t {\displaystyle {^{\text{C}}\operatorname {D} _{x}^{m+z}}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(1-z\right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(m+1\right)}\left(t\right)}{\left(x-t\right)^{z}}}\,\operatorname {d} t}
where C m ( 0 , ∞ ) {\displaystyle C^{m}\left(0,\,\infty \right)} and m ∈ N 0 ∧ 0 < z < 1 {\textstyle m\in \mathbb {N} _{0}\wedge 0<z<1} . [ 2]
A popular equivalent definition is:
C D x α [ f ( x ) ] = 1 Γ ( ⌈ α ⌉ − α ) ⋅ ∫ 0 x f ( ⌈ α ⌉ ) ( t ) ( x − t ) α + 1 − ⌈ α ⌉ d t {\displaystyle {^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(\left\lceil \alpha \right\rceil \right)}\left(t\right)}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t}
where α ∈ R > 0 ∖ N {\textstyle \alpha \in \mathbb {R} _{>0}\setminus \mathbb {N} } and ⌈ ⋅ ⌉ {\textstyle \left\lceil \cdot \right\rceil } is the ceiling function . This can be derived by substituting α = m + z {\textstyle \alpha =m+z} so that ⌈ α ⌉ = m + 1 {\textstyle \left\lceil \alpha \right\rceil =m+1} would apply and ⌈ α ⌉ + z = α + 1 {\textstyle \left\lceil \alpha \right\rceil +z=\alpha +1} follows. [ 3]
Another popular equivalent definition is given by:
C D x α [ f ( x ) ] = 1 Γ ( n − α ) ⋅ ∫ 0 x f ( n ) ( t ) ( x − t ) α + 1 − n d t {\displaystyle {^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(n-\alpha \right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(n\right)}\left(t\right)}{\left(x-t\right)^{\alpha +1-n}}}\,\operatorname {d} t}
where n − 1 < α < n ∈ N . {\textstyle n-1<\alpha <n\in \mathbb {N} .} .
The problem with these definitions is that they only allow arguments in ( 0 , ∞ ) {\textstyle \left(0,\,\infty \right)} . This can be fixed by replacing the lower integral limit with a {\textstyle a} : a C D x α [ f ( x ) ] = 1 Γ ( ⌈ α ⌉ − α ) ⋅ ∫ a x f ( ⌈ α ⌉ ) ( t ) ( x − t ) α + 1 − ⌈ α ⌉ d t {\textstyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{a}^{x}{\frac {f^{\left(\left\lceil \alpha \right\rceil \right)}\left(t\right)}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t} . The new domain is ( a , ∞ ) {\textstyle \left(a,\,\infty \right)} . [ 4]
Properties and theorems Relation to other fractional differential operators Caputo-type fractional derivative is closely related to the Riemann–Liouville fractional integral via its definition:
a C D x α [ f ( x ) ] = a RL I x ⌈ α ⌉ − α [ D x ⌈ α ⌉ [ f ( x ) ] ] {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]={_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left[\operatorname {D} _{x}^{\left\lceil \alpha \right\rceil }\left[f\left(x\right)\right]\right]}
Furthermore, the following relation applies:
a C D x α [ f ( x ) ] = a RL D x α [ f ( x ) ] − ∑ k = 0 ⌈ α ⌉ [ x k − α Γ ( k − α + 1 ) ⋅ f ( k ) ( 0 ) ] {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]={_{a}^{\text{RL}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]-\sum \limits _{k=0}^{\left\lceil \alpha \right\rceil }\left[{\frac {x^{k-\alpha }}{\Gamma \left(k-\alpha +1\right)}}\cdot f^{\left(k\right)}\left(0\right)\right]}
where a RL D x α {\displaystyle {_{a}^{\text{RL}}\operatorname {D} _{x}^{\alpha }}} is the Riemann–Liouville fractional derivative.
The Laplace transform of the Caputo-type fractional derivative is given by:
L x { a C D x α [ f ( x ) ] } ( s ) = s α ⋅ F ( s ) − ∑ k = 0 ⌈ α ⌉ [ s α − k − 1 ⋅ f ( k ) ( 0 ) ] {\displaystyle {\mathcal {L}}_{x}\left\{{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[f\left(x\right)\right]\right\}\left(s\right)=s^{\alpha }\cdot F\left(s\right)-\sum \limits _{k=0}^{\left\lceil \alpha \right\rceil }\left[s^{\alpha -k-1}\cdot f^{\left(k\right)}\left(0\right)\right]}
where L x { f ( x ) } ( s ) = F ( s ) {\textstyle {\mathcal {L}}_{x}\left\{f\left(x\right)\right\}\left(s\right)=F\left(s\right)} . [ 8]
Caputo fractional derivative of some functions The Caputo fractional derivative of a constant c {\displaystyle c} is given by:
a C D x α [ c ] = 1 Γ ( ⌈ α ⌉ − α ) ⋅ ∫ a x D t ⌈ α ⌉ [ c ] ( x − t ) α + 1 − ⌈ α ⌉ d t = 1 Γ ( ⌈ α ⌉ − α ) ⋅ ∫ a x 0 ( x − t ) α + 1 − ⌈ α ⌉ d t a C D x α [ c ] = 0 {\displaystyle {\begin{aligned}{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[c\right]&={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{a}^{x}{\frac {\operatorname {D} _{t}^{\left\lceil \alpha \right\rceil }\left[c\right]}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{a}^{x}{\frac {0}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t\\{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[c\right]&=0\end{aligned}}}
The Caputo fractional derivative of a power function x b {\displaystyle x^{b}} is given by: [ 9]
a C D x α [ x b ] = a RL I x ⌈ α ⌉ − α [ D x ⌈ α ⌉ [ x b ] ] = Γ ( b + 1 ) Γ ( b − ⌈ α ⌉ + 1 ) ⋅ a RL I x ⌈ α ⌉ − α [ x b − ⌈ α ⌉ ] a C D x α [ x b ] = { Γ ( b + 1 ) Γ ( b − α + 1 ) ( x b − α − a b − α ) , for ⌈ α ⌉ − 1 < b ∧ b ∈ R 0 , for ⌈ α ⌉ − 1 ≥ b ∧ b ∈ N {\displaystyle {\begin{aligned}{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[x^{b}\right]&={_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left[\operatorname {D} _{x}^{\left\lceil \alpha \right\rceil }\left[x^{b}\right]\right]={\frac {\Gamma \left(b+1\right)}{\Gamma \left(b-\left\lceil \alpha \right\rceil +1\right)}}\cdot {_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left[x^{b-\left\lceil \alpha \right\rceil }\right]\\{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[x^{b}\right]&={\begin{cases}{\frac {\Gamma \left(b+1\right)}{\Gamma \left(b-\alpha +1\right)}}\left(x^{b-\alpha }-a^{b-\alpha }\right),\,&{\text{for }}\left\lceil \alpha \right\rceil -1<b\wedge b\in \mathbb {R} \\0,\,&{\text{for }}\left\lceil \alpha \right\rceil -1\geq b\wedge b\in \mathbb {N} \\\end{cases}}\end{aligned}}}
The Caputo fractional derivative of an exponential function e a ⋅ x {\displaystyle e^{a\cdot x}} is given by:
a C D x α [ e b ⋅ x ] = a RL I x ⌈ α ⌉ − α [ D x ⌈ α ⌉ [ e b ⋅ x ] ] = b ⌈ α ⌉ ⋅ a RL I x ⌈ α ⌉ − α [ e b ⋅ x ] a C D x α [ e b ⋅ x ] = b α ⋅ ( E x ( ⌈ α ⌉ − α , b ) − E a ( ⌈ α ⌉ − α , b ) ) {\displaystyle {\begin{aligned}{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[e^{b\cdot x}\right]&={_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left[\operatorname {D} _{x}^{\left\lceil \alpha \right\rceil }\left[e^{b\cdot x}\right]\right]=b^{\left\lceil \alpha \right\rceil }\cdot {_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left[e^{b\cdot x}\right]\\{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left[e^{b\cdot x}\right]&=b^{\alpha }\cdot \left(E_{x}\left(\left\lceil \alpha \right\rceil -\alpha ,\,b\right)-E_{a}\left(\left\lceil \alpha \right\rceil -\alpha ,\,b\right)\right)\\\end{aligned}}}
where E x ( ν , a ) = a − ν ⋅ e a ⋅ x ⋅ γ ( ν , a ⋅ x ) Γ ( ν ) {\textstyle E_{x}\left(\nu ,\,a\right)={\frac {a^{-\nu }\cdot e^{a\cdot x}\cdot \gamma \left(\nu ,\,a\cdot x\right)}{\Gamma \left(\nu \right)}}} is the E t {\textstyle \operatorname {E} _{t}} -function and γ ( a , b ) {\textstyle \gamma \left(a,\,b\right)} is the lower incomplete gamma function . [ 10]
References ↑ Diethelm, Kai (2019). "General theory of Caputo-type fractional differential equations" . Fractional Differential Equations . pp. 1– 20. doi :10.1515/9783110571660-001 . ISBN 978-3-11-057166-0 . Retrieved 2023-08-10 . ↑ Caputo, Michele (1967). "Linear Models of Dissipation whose Q is almost Frequency Independent-II" . ResearchGate . 13 (5): 530. Bibcode :1967GeoJ...13..529C . doi : 10.1111/j.1365-246X.1967.tb02303.x . ↑ Lazarević, Mihailo; Rapaić, Milan Rade; Šekara, Tomislav (2014). "Introduction to Fractional Calculus with Brief Historical Background" . ResearchGate : 8. ↑ Dimitrov, Yuri; Georgiev, Slavi; Todorov, Venelin (2023). "Approximation of Caputo Fractional Derivative and Numerical Solutions of Fractional Differential Equations" . Fractal and Fractional . 7 (10): 750. doi : 10.3390/fractalfract7100750 . ↑ Sikora, Beata (2023). "Remarks on the Caputo fractional derivative" (PDF) . Matematyka I Informatyka Na Uczelniach Technicznych (5): 78– 79. ↑ Huseynov, Ismail; Ahmadova, Arzu; Mahmudov, Nazim (2020). "Fractional Leibniz integral rules for Riemann-Liouville and Caputo fractional derivatives and their applications" . ResearchGate : 1. arXiv : 2012.11360 . ↑ Weisstein, Eric W. (2024). "Binomial Coefficient" . mathworld.wolfram.com . Retrieved 2024-05-20 . ↑ Sontakke, Bhausaheb Rajba; Shaikh, Amjad (2015). "Properties of Caputo Operator and Its Applications to Linear Fractional Differential Equations" (PDF) . Journal of Engineering Research and Applications . 5 (5): 23– 24. ISSN 2248-9622 . ↑ Weisstein, Eric W. "Fractional Derivative" . mathworld.wolfram.com . Retrieved 2024-05-20 . ↑ Weisstein, Eric W. (2024). "E_t-Function" . mathworld.wolfram.com . Retrieved 2024-05-20 . This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.