Carbon-based fuel

Last updated

Carbon-based fuel is any fuel principally from the oxidation or burning of carbon. Carbon-based fuels are of two main kinds, biofuels and fossil fuels. Whereas biofuels are derived from recent-growth organic matter [1] and are typically harvested, as with logging of forests and cutting of corn, fossil fuels are of prehistoric origin [2] and are extracted from the ground, the principal fossil fuels being oil, coal, and natural gas.

From an economic policy perspective, an important distinction between biofuels and fossil fuels is that only the former is sustainable or renewable.

Whereas we can continue to obtain energy from biofuels indefinitely in principle, the Earth's reserves of fossil fuels was determined millions of years ago [3] and is therefore fixed as far as our foreseeable future is concerned. The great variability in the ease of extraction of fossil fuels however makes its endgame scenario one of increasing prices over one or more centuries rather than of abrupt exhaustion. [4]

From the perspective of climate and ecology, biofuels and fossil fuels have in common that they contribute to the production of atmospheric carbon dioxide, which has emerged in recent decades as the fastest-changing greenhouse gas, whose principal impacts are global warming and ocean acidification. However biofuels actively participate in the carbon cycle today by photosynthesizing carbon dioxide, unlike fossil fuels whose participation was long ago, and can therefore in principle bring atmospheric CO2 into an equilibrium not possible with the continued use of fossil fuel. But in practice photosynthesis is a slow process, and the additional fuel produced by artificial methods of accelerating it such as application of fertilizer tends to be offset by the energy consumed by the accelerating processes, [5] to a degree currently under active debate. [6] In contrast the speed of photosynthesis is immaterial for fossil fuels because they had millions of years in which to accumulate. Burning of both fossil fuels and biofuels usually also produces carbon monoxide, which is toxic and can kill a person after mixing with the haemoglobin of the blood, increasing its concentration in the body. Biofuels and fossil fuels may also produce many other air pollutants depending on the contents of the fuel.

Related Research Articles

<span class="mw-page-title-main">Fossil fuel</span> Fuel formed over millions of years from dead plants and animals

A fossil fuel is a carbon compound- or hydrocarbon-containing material such as coal, oil, and natural gas, formed naturally in the Earth's crust from the remains of prehistoric organisms, a process that occurs within geological formations. Reservoirs of such compound mixtures can be extracted and burned as a fuel for human consumption to provide heat for direct use, to power heat engines that can propel vehicles, or to generate electricity via steam turbine generators. Some fossil fuels are further refined into derivatives such as kerosene, gasoline and diesel.

<span class="mw-page-title-main">Fossil fuel power station</span> Facility that burns fossil fuels to produce electricity

A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal, oil, or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.

<span class="mw-page-title-main">Bioenergy</span> Renewable energy made from biomass

Bioenergy is a type of renewable energy that is derived from plants and animal waste. The biomass that is used as input materials consists of recently living organisms, mainly plants. Thus, fossil fuels are not regarded as biomass under this definition. Types of biomass commonly used for bioenergy include wood, food crops such as corn, energy crops and waste from forests, yards, or farms.

Renewable fuels are fuels produced from renewable resources. Examples include: biofuels, Hydrogen fuel, and fully synthetic fuel produced from ambient carbon dioxide and water. This is in contrast to non-renewable fuels such as natural gas, LPG (propane), petroleum and other fossil fuels and nuclear energy. Renewable fuels can include fuels that are synthesized from renewable energy sources, such as wind and solar. Renewable fuels have gained in popularity due to their sustainability, low contributions to the carbon cycle, and in some cases lower amounts of greenhouse gases. The geo-political ramifications of these fuels are also of interest, particularly to industrialized economies which desire independence from Middle Eastern oil.

<span class="mw-page-title-main">Energy policy of Australia</span>

The energy policy of Australia is subject to the regulatory and fiscal influence of all three levels of government in Australia, although only the State and Federal levels determine policy for primary industries such as coal. Federal policies for energy in Australia continue to support the coal mining and natural gas industries through subsidies for fossil fuel use and production. Australia is the 10th most coal-dependent country in the world. Coal and natural gas, along with oil-based products, are currently the primary sources of Australian energy usage and the coal industry produces over 30% of Australia's total greenhouse gas emissions. In 2018 Australia was the 8th highest emitter of greenhouse gases per capita in the world.

<span class="mw-page-title-main">Greenhouse gas emissions</span> Greenhouse gases emitted from human activities

Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide, from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the United States. The United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies. Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2022 were 703 GtC, of which 484±20 GtC from fossil fuels and industry, and 219±60 GtC from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2022, coal 32%, oil 24%, and gas 10%.

<span class="mw-page-title-main">Carbon dioxide in Earth's atmosphere</span> Atmospheric constituent and greenhouse gas

In Earth's atmosphere, carbon dioxide is a trace gas that plays an integral part in the greenhouse effect, carbon cycle, photosynthesis and oceanic carbon cycle. It is one of three main greenhouse gases in the atmosphere of Earth. Water vapor is the primary greenhouse gas, as of 2010, contributing 50% of the greenhouse effect, followed by carbon dioxide at 20%. The current global average concentration of carbon dioxide in the atmosphere is 421 ppm (0.04%) as of May 2022. This is an increase of 50% since the start of the Industrial Revolution, up from 280 ppm during the 10,000 years prior to the mid-18th century. The increase is due to human activity.

<span class="mw-page-title-main">Biofuel in Sweden</span> Use of renewable fuels from living organisms in Sweden

Biofuels are renewable fuels that are produced by living organisms (biomass). Biofuels can be solid, gaseous or liquid, which comes in two forms: ethanol and biodiesel and often replace fossil fuels. Many countries now use biofuels as energy sources, including Sweden. Sweden has one of the highest usages of biofuel in all of Europe, at 32%, primarily due to the widespread commitment to E85, bioheating and bioelectricity.

Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.

<span class="mw-page-title-main">Fossil fuel phase-out</span> Gradual reduction of the use and production of fossil fuels

Fossil fuel phase-out is the gradual reduction of the use and production of fossil fuels to zero, to reduce deaths and illness from air pollution, limit climate change, and strengthen energy independence. It is part of the ongoing renewable energy transition, but is being hindered by fossil fuel subsidies.

The biofuel sector in the United Kingdom, under the auspices of the government's Renewable Transport Fuel Obligation (RTFO), has been progressing towards enhanced sustainable energy solutions. Marking a significant stride in this direction was the government's endorsement and introduction of E10 biofuel in late 2021. This fuel blend, consisting of 90% regular unleaded gasoline and 10% ethanol, was introduced as part of an initiative to reduce greenhouse gas emissions (GHG) from transport fuels. The introduction of E10 led to a shift in the renewable fuel landscape in the UK, particularly influencing an increase in the utilization of non-waste feedstocks. In the year 2022, the biofuel sector, as per government reports, achieved a reduction in GHG emissions by 82% in comparison to traditional fossil fuels.

<span class="mw-page-title-main">Sustainable biofuel</span> Non-fossil-based sustainable production

Sustainable biofuel is biofuel produced in a sustainable manner. It is not based on petroleum or other fossil fuels. It includes not using plants that are used for food stuff to produce the fuel thus disrupting the world's food supply.

Issues relating to biofuel are social, economic, environmental and technical problems that may arise from biofuel production and use. Social and economic issues include the "food vs fuel" debate and the need to develop responsible policies and economic instruments to ensure sustainable biofuel production. Farming for biofuels feedstock can be detrimental to the environment if not done sustainably. Environmental concerns include deforestation, biodiversity loss and soil erosion as a result of land clearing for biofuels agriculture. While biofuels can contribute to reduction in global carbon emissions, indirect land use change for biofuel production can have the inverse effect. Technical issues include possible modifications necessary to run the engine on biofuel, as well as energy balance and efficiency.

<span class="mw-page-title-main">Biomass briquettes</span> Fuel source made from green waste

Biomass briquettes are a biofuel substitute made of biodegradable green waste with lower emissions of greenhouses gases and carbon dioxide than traditional fuel sources. This fuel source is used as an alternative for harmful biofuels. Briquettes are used for heating, cooking fuel, and electricity generation usually in developing countries that do not have access to more modern fuel sources. Biomass briquettes have become popular in developed countries due to the accessibility, and eco-friendly impact. The briquettes can be used in the developed countries for producing electricity from steam power by heating water in boilers.

Strict sustainability standards for biofuel in the European Union (EU) are set by the European Commissioner on Energy. Biofuels are considered a renewable alternative to fossil fuels in the transportation sector for the EU. The EU has played a large role in increasing the use of biofuels in member states; however, it has also aimed, to some extent, to mitigate the potential negative impacts of biofuel production. Current EU legislation on biofuels includes a goal to increase renewable energy consumption by 20%, eliminate biofuel feedstock sourced from carbon-rich land, accounting for emissions caused from land use change as well as solely biofuel usage, and reducing greenhouse gas intensities from fuels used in transport and machinery.

<span class="mw-page-title-main">Fuel</span> Material used to create heat and energy

A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but has since also been applied to other sources of heat energy, such as nuclear energy.

<span class="mw-page-title-main">Environmental impact of the energy industry</span>

The environmental impact of the energy industry is significant, as energy and natural resource consumption are closely related. Producing, transporting, or consuming energy all have an environmental impact. Energy has been harnessed by human beings for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years. In recent years there has been a trend towards the increased commercialization of various renewable energy sources. Scientific consensus on some of the main human activities that contribute to global warming are considered to be increasing concentrations of greenhouse gases, causing a warming effect, global changes to land surface, such as deforestation, for a warming effect, increasing concentrations of aerosols, mainly for a cooling effect.

<span class="mw-page-title-main">Health and environmental impact of the petroleum industry</span>

The environmental impact of the petroleum industry is extensive and expansive due to petroleum having many uses. Crude oil and natural gas are primary energy and raw material sources that enable numerous aspects of modern daily life and the world economy. Their supply has grown quickly over the last 150 years to meet the demands of the rapidly increasing human population, creativity, knowledge, and consumerism.

<span class="mw-page-title-main">Atmospheric carbon cycle</span> Transformation of atmospheric carbon between various forms

The atmospheric carbon cycle accounts for the exchange of gaseous carbon compounds, primarily carbon dioxide, between Earth's atmosphere, the oceans, and the terrestrial biosphere. It is one of the faster components of the planet's overall carbon cycle, supporting the exchange of more than 200 billion tons of carbon in and out of the atmosphere throughout the course of each year. Atmospheric concentrations of CO2 remain stable over longer timescales only when there exists a balance between these two flows. Methane, Carbon monoxide (CO), and other human-made compounds are present in smaller concentrations and are also part of the atmospheric carbon cycle.

Carbon-neutral fuel is fuel which produces no net-greenhouse gas emissions or carbon footprint. In practice, this usually means fuels that are made using carbon dioxide (CO2) as a feedstock. Proposed carbon-neutral fuels can broadly be grouped into synthetic fuels, which are made by chemically hydrogenating carbon dioxide, and biofuels, which are produced using natural CO2-consuming processes like photosynthesis.

References

  1. Demirbas, A. . (2009). "Political, economic and environmental impacts of biofuels: A review". Applied Energy. 86: S108–S117. doi:10.1016/j.apenergy.2009.04.036.
  2. Paul Mann, Lisa Gahagan, and Mark B. Gordon, "Tectonic setting of the world's giant oil and gas fields," in Michel T. Halbouty (ed.) Giant Oil and Gas Fields of the Decade, 1990-1999, Tulsa, Okla.: American Association of Petroleum Geologists, p.50, accessed 22 June 2009.
  3. Dr. Irene Novaczek. "Canada's Fossil Fuel Dependency". Elements.nb.ca. Archived from the original on 2019-09-04. Retrieved 2007-01-18.
  4. "Microsoft Word - NETL Final Report, 2-05.doc" (PDF). Archived from the original (PDF) on 2009-12-15. Retrieved 2009-11-28.
  5. Pimentel-Patzek report Archived 2007-08-09 at the Wayback Machine
  6. National Biodiesel Board response to Pimentel Archived May 18, 2008, at the Wayback Machine