Carbotanium

Last updated

Carbotanium is a combination of beta titanium alloy and carbon composite. It is commonly used in Pagani cars.

Contents

Properties

It is a combination of beta titanium alloy with advanced carbon composites, having a matched yield strength and moduli of elasticity ratio. When the combination is adhesively bonded, both parts will approach maximum yield strength and fail at a similar amount of total strain. [1] The components of carbotanium; carbon fiber and titanium, are woven together to form a strong, light material that can withstand significant amounts of heat and strain. This is because carbon fiber has the highest strength-to-density ratio of any current fiber and titanium has the highest strength-to-density ratio of any current metal. As a result, carbotanium can withstand temperatures up to 315 °C. [2] The material properties of carbotanium are a mixture of those of a titanium alloy and a carbon fiber.

Manufacturing

The titanium and carbon composites are combined by first abrading the titanium to be bonded, coating the titanium with platinum. The titanium is then heated in an oven at 500 °C for several hours. [3] A primer is then sprayed onto the coated titanium. Next, an adhesive is applied to the primer side of the titanium and then finally, the carbon is applied to the adhesive. [4]

Usage

The Pagani Zonda R, which is made from carbotanium. Zonda R Rear 1.jpg
The Pagani Zonda R, which is made from carbotanium.

Carbotanium is a patented composite material invented by Modena Design, the carbon composite manufacturing and consultancy arm of the Italian car company Pagani. Pagani has applied this weave on select models of their extra strong and lightweight supercars, the Pagani Zonda R and Pagani Huayra. Although not all Pagani Zondas are manufactured to include carbotanium, some are built with carbon fibre structures and other variations of composite materials have been used.

Related Research Articles

In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic or another metal. They are typically classified according to the type of reinforcement: short discontinuous fibers (whiskers), continuous fibers, or particulates. There is some overlap between MMCs and cermets, with the latter typically consisting of less than 20% metal by volume. When at least three materials are present, it is called a hybrid composite. MMCs can have much higher strength-to-weight ratios, stiffness, and ductility than traditional materials, so they are often used in demanding applications. MMCs typically have lower thermal and electrical conductivity and poor resistance to radiation, limiting their use in the very harshest environments.

<span class="mw-page-title-main">Composite material</span> Material made from a combination of two or more unlike substances

A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions. Composite materials with more than one distinct layer are called composite laminates.

<span class="mw-page-title-main">Carbon fibers</span> Material fibers about 5–10 μm in diameter composed of carbon

Carbon fibers or carbon fibres are fibers about 5 to 10 micrometers (0.00020–0.00039 in) in diameter and composed mostly of carbon atoms. Carbon fibers have several advantages: high stiffness, high tensile strength, high strength to weight ratio, high chemical resistance, high-temperature tolerance, and low thermal expansion. These properties have made carbon fiber very popular in aerospace, civil engineering, military, motorsports, and other competition sports. However, they are relatively expensive compared to similar fibers, such as glass fiber, basalt fibers, or plastic fibers.

Fiberglass or fibreglass is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.

<span class="mw-page-title-main">Bicycle frame</span> Main component of a bicycle

A bicycle frame is the main component of a bicycle, onto which wheels and other components are fitted. The modern and most common frame design for an upright bicycle is based on the safety bicycle, and consists of two triangles: a main triangle and a paired rear triangle. This is known as the diamond frame. Frames are required to be strong, stiff and light, which they do by combining different materials and shapes.

<span class="mw-page-title-main">Young's modulus</span> Mechanical property that measures stiffness of a solid material

Young's modulus is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Young's modulus is defined as the ratio of the stress applied to the object and the resulting axial strain in the linear elastic region of the material.

<span class="mw-page-title-main">Engineered wood</span> Range of derivative wood products engineered for uniform and predictable structural performance

Engineered wood, also called mass timber, composite wood, human-made wood, or manufactured board, includes a range of derivative wood products which are manufactured by binding or fixing the strands, particles, fibres, or veneers or boards of wood, together with adhesives, or other methods of fixation to form composite material. The panels vary in size but can range upwards of 64 by 8 feet and in the case of cross-laminated timber (CLT) can be of any thickness from a few inches to 16 inches (410 mm) or more. These products are engineered to precise design specifications, which are tested to meet national or international standards and provide uniformity and predictability in their structural performance. Engineered wood products are used in a variety of applications, from home construction to commercial buildings to industrial products. The products can be used for joists and beams that replace steel in many building projects. The term mass timber describes a group of building materials that can replace concrete assemblies.

Pagani Automobili S.p.A. is an Italian manufacturer of hypercars and carbon fiber components. The company was founded in 1992 by the Argentine-Italian Horacio Pagani and is based in San Cesario sul Panaro, near Modena, Italy.

<span class="mw-page-title-main">Pagani Zonda</span> Mid-engine sports car manufactured by Italian sports car manufacturer Pagani from 1999–2019

The Pagani Zonda is a mid-engine sports car produced by Italian sports car manufacturer Pagani. It debuted at the 1999 Geneva Motor Show. Produced on commission in limited units, as of 2019 a total of 140 cars had been built, including development mules. Variants include a 2-door coupé and roadster variant, along with a third new variant being the barchetta. Construction is mainly of carbon fibre.

<span class="mw-page-title-main">Reinforced carbon–carbon</span> Graphite-based composite material

Carbon fibre reinforced carbon (CFRC), carbon–carbon (C/C), or reinforced carbon–carbon (RCC) is a composite material consisting of carbon fiber reinforcement in a matrix of graphite. It was developed for the reentry vehicles of intercontinental ballistic missiles, and is most widely known as the material for the nose cone and wing leading edges of the Space Shuttle orbiter. Carbon-carbon brake discs and brake pads have been the standard component of the brake systems of Formula One racing cars since the late 1970s; the first year carbon brakes were seen on a Formula One car was 1976.

<span class="mw-page-title-main">Metallic fiber</span> Thread wholly or partly made from metal

Metallic fibers are manufactured fibers composed of metal, metallic alloys, plastic-coated metal, metal-coated plastic, or a core completely covered by metal.

<span class="mw-page-title-main">Titanium alloys</span> Metal alloys made by combining titanium with other elements

Titanium alloys are alloys that contain a mixture of titanium and other chemical elements. Such alloys have very high tensile strength and toughness. They are light in weight, have extraordinary corrosion resistance and the ability to withstand extreme temperatures. However, the high cost of processing limits their use to military applications, aircraft, spacecraft, bicycles, medical devices, jewelry, highly stressed components such as connecting rods on expensive sports cars and some premium sports equipment and consumer electronics.

The specific strength is a material's strength divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa⋅m3/kg, or N⋅m/kg, which is dimensionally equivalent to m2/s2, though the latter form is rarely used. Specific strength has the same units as specific energy, and is related to the maximum specific energy of rotation that an object can have without flying apart due to centrifugal force.

Methods have been devised to modify the yield strength, ductility, and toughness of both crystalline and amorphous materials. These strengthening mechanisms give engineers the ability to tailor the mechanical properties of materials to suit a variety of different applications. For example, the favorable properties of steel result from interstitial incorporation of carbon into the iron lattice. Brass, a binary alloy of copper and zinc, has superior mechanical properties compared to its constituent metals due to solution strengthening. Work hardening has also been used for centuries by blacksmiths to introduce dislocations into materials, increasing their yield strengths.

<span class="mw-page-title-main">Structural material</span>

Structural engineering depends on the knowledge of materials and their properties, in order to understand how different materials resist and support loads.

<span class="mw-page-title-main">Ceramic matrix composite</span> Composite material consisting of ceramic fibers in a ceramic matrix

In materials science ceramic matrix composites (CMCs) are a subgroup of composite materials and a subgroup of ceramics. They consist of ceramic fibers embedded in a ceramic matrix. The fibers and the matrix both can consist of any ceramic material, including carbon and carbon fibers.

Carbon fiber-reinforced polymers, carbon-fibre-reinforced polymers, carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic, also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.

<span class="mw-page-title-main">Pagani Huayra</span> Mid-engined Italian sport car

The Pagani Huayra is a mid-engine sports car produced by Italian sports car manufacturer Pagani, succeeding the company's previous offering, the Zonda. It is named after Wayra Tata, the Quechua wind god. The Huayra was named "The Hypercar of the Year 2012" by Top Gear magazine. On 11 February 2015 it was reported that the Pagani Huayra has been sold out. The Huayra was limited to just 100 units as part of Pagani's agreement with engine supplier Mercedes-AMG.

Welding of advanced thermoplastic composites is a beneficial method of joining these materials compared to mechanical fastening and adhesive bonding. Mechanical fastening requires intense labor, and creates stress concentrations, while adhesive bonding requires extensive surface preparation, and long curing cycles. Welding these materials is a cost-effective method of joining concerning preparation and execution, and these materials retain their properties upon cooling, so no post processing is necessary. These materials are widely used in the aerospace industry to reduce weight of a part while keeping strength.

Titanium adhesive bonding is an engineering process used in the aerospace industry, medical-device manufacture and elsewhere. Titanium alloy is often used in medical and military applications because of its strength, weight, and corrosion resistance characteristics. In implantable medical devices, titanium is used because of its biocompatibility and its passive, stable oxide layer. Also, titanium allergies are rare and in those cases mitigations like Parylene coating are used. In the aerospace industry titanium is often bonded to save cost, touch times, and the need for mechanical fasteners. In the past, Russian submarines' hulls were completely made of titanium because the non-magnetic nature of the material went undetected by the defense technology at that time. Bonding adhesive to titanium requires preparing the surface beforehand, and there is not a single solution for all applications. For example, etchant and chemical methods are not biocompatible and cannot be employed when the device will come into contact with blood and tissue. Mechanical surface roughness techniques like sanding and laser roughening may make the surface brittle and create micro-hardness regions that would not be suitable for cyclic loading found in military applications. Air oxidation at high temperatures will produce a crystalline oxide layer at a lower investment cost, but the increased temperatures can deform precision parts. The type of adhesive, thermosetting or thermoplastic, and curing methods are also factors in titanium bonding because of the adhesive's interaction with the treated oxide layer. Surface treatments can also be combined. For example, a grit blast process can be followed by a chemical etch and a primer application.

References

  1. "Top 14 materials for 2014". www.materialsforengineering.co.uk. Retrieved 2018-12-04.
  2. christofvanpoucke (2014-03-10). "Carbotanium". Carbon Fibre Monocoque. Retrieved 2018-12-04.
  3. "Carbotanium. The Zonda R's heritage". Car Throttle. Retrieved 2018-12-11.
  4. "Carbon-titanium composites" . Retrieved 7 January 2015.

Further reading