Carlo Gambacorti-Passerini

Last updated
Carlo Gambacorti-Passerini
Carlo Gambacorti-Passerini 2010.jpg
Born (1957-08-26) 26 August 1957 (age 66)

Carlo Gambacorti-Passerini (born 26 August 1957) is an Italian oncologist and hematologist known for his contributions to cancer research.

He is Professor of Internal Medicine and Hematology at the University of Milan Bicocca in Italy and Director of the Hematology Department at S. Gerardo Hospital, Monza, Italy. He was Senior Investigator and Head of the Oncogenic Fusion Proteins Unit at the National Cancer Institute, Milan Italy from 1990 to 2003, and Professor of Oncology and Hematology at McGill University, Montreal, Quebec, Canada, from 2004 to 2007.

Research

His main scientific contribution relates to the preclinical and clinical development of imatinib. [1] His publications between 1997 and 2000 are among the earliest original reports on this revolutionary drug. Specifically, he showed that apoptosis, or programmed cell death, was the predominant mechanism through which imatinib eliminates leukemic cells, that leukemic animals could be cured using imatinib, and that resistance to imatinib could be mediated by gene amplification of BCR-ABL1.

Dr. Gambacorti-Passerini is the Chairman of the ILTE (Imatinib Long Term side Effects) study, [2] an independent clinical study aimed at assessing the long-term effects of imatinib in 948 CML patients worldwide, which showed for the first time that CML patients in remission have a normal life expectancy. [3] From 2006 to 2011, Dr. Gambacorti-Passerini was the first researcher to develop at preclinical and clinical level another drug for CML named bosutinib.

He is also the first researcher who (in June 2010) successfully treated a patient affected by ALK+ lymphoma with an ALK inhibitor (crizotinib). [4] [5] [6] The events which led to the discovery of crizotinib for the treatment of ALK+ lymphomas became part of a novel entitled "Tu sarai la prima" ("You will be the first one", translations sought). [7]

In 2012 and 2015 Dr. Gambacorti-Passerini discovered SETBP1 and ETNK1 as two novel oncogenes and identified specific mutations of these genes in patients affected by atypical Chronic Myeloid Leukemia (aCML). [8] [9] [10] [11]

Related Research Articles

<span class="mw-page-title-main">Leukemia</span> Blood cancers forming in the bone marrow

Leukemia is a group of blood cancers that usually begin in the bone marrow and produce high numbers of abnormal blood cells. These blood cells are not fully developed and are called blasts or leukemia cells. Symptoms may include bleeding and bruising, bone pain, fatigue, fever, and an increased risk of infections. These symptoms occur due to a lack of normal blood cells. Diagnosis is typically made by blood tests or bone marrow biopsy.

<span class="mw-page-title-main">Philadelphia chromosome</span> Genetic abnormality in leukemia cancer cells

The Philadelphia chromosome or Philadelphia translocation (Ph) is a specific genetic abnormality in chromosome 22 of leukemia cancer cells. This chromosome is defective and unusually short because of reciprocal translocation, t(9;22)(q34;q11), of genetic material between chromosome 9 and chromosome 22, and contains a fusion gene called BCR-ABL1. This gene is the ABL1 gene of chromosome 9 juxtaposed onto the breakpoint cluster region BCR gene of chromosome 22, coding for a hybrid protein: a tyrosine kinase signaling protein that is "always on", causing the cell to divide uncontrollably by interrupting the stability of the genome and impairing various signaling pathways governing the cell cycle.

<span class="mw-page-title-main">Chronic myelogenous leukemia</span> Medical condition

Chronic myelogenous leukemia (CML), also known as chronic myeloid leukemia, is a cancer of the white blood cells. It is a form of leukemia characterized by the increased and unregulated growth of myeloid cells in the bone marrow and the accumulation of these cells in the blood. CML is a clonal bone marrow stem cell disorder in which a proliferation of mature granulocytes and their precursors is found; characteristic increase in basophils is clinically relevant. It is a type of myeloproliferative neoplasm associated with a characteristic chromosomal translocation called the Philadelphia chromosome.

<span class="mw-page-title-main">Imatinib</span> Chemical compound

Imatinib, sold under the brand names Gleevec and Glivec (both marketed worldwide by Novartis) among others, is an oral targeted therapy medication used to treat cancer. Imatinib is a small molecule inhibitor targeting multiple tyrosine kinases such as CSF1R, ABL, c-KIT, FLT3, and PDGFR-β. Specifically, it is used for chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL) that are Philadelphia chromosome–positive (Ph+), certain types of gastrointestinal stromal tumors (GIST), hypereosinophilic syndrome (HES), chronic eosinophilic leukemia (CEL), systemic mastocytosis, and myelodysplastic syndrome.

<span class="mw-page-title-main">Tumors of the hematopoietic and lymphoid tissues</span> Tumors that affect the blood, bone marrow, lymph, and lymphatic system

Tumors of the hematopoietic and lymphoid tissues or tumours of the haematopoietic and lymphoid tissues are tumors that affect the blood, bone marrow, lymph, and lymphatic system. Because these tissues are all intimately connected through both the circulatory system and the immune system, a disease affecting one will often affect the others as well, making aplasia, myeloproliferation and lymphoproliferation closely related and often overlapping problems. While uncommon in solid tumors, chromosomal translocations are a common cause of these diseases. This commonly leads to a different approach in diagnosis and treatment of hematological malignancies. Hematological malignancies are malignant neoplasms ("cancer"), and they are generally treated by specialists in hematology and/or oncology. In some centers "hematology/oncology" is a single subspecialty of internal medicine while in others they are considered separate divisions. Not all hematological disorders are malignant ("cancerous"); these other blood conditions may also be managed by a hematologist.

<span class="mw-page-title-main">Myeloid sarcoma</span> Medical condition

A myeloid sarcoma is a solid tumor composed of immature white blood cells called myeloblasts. A chloroma is an extramedullary manifestation of acute myeloid leukemia; in other words, it is a solid collection of leukemic cells occurring outside of the bone marrow.

<span class="mw-page-title-main">Myeloproliferative neoplasm</span> Overproduction of blood cells in the bone marrow

Myeloproliferative neoplasms (MPNs) are a group of rare blood cancers in which excess red blood cells, white blood cells or platelets are produced in the bone marrow. Myelo refers to the bone marrow, proliferative describes the rapid growth of blood cells and neoplasm describes that growth as abnormal and uncontrolled.

<span class="mw-page-title-main">Acute myeloblastic leukemia with maturation</span> Medical condition

Acute myeloblastic leukemia with maturation (M2) is a subtype of acute myeloid leukemia (AML).

<span class="mw-page-title-main">Anaplastic lymphoma kinase</span> Protein-coding gene in the species Homo sapiens

Anaplastic lymphoma kinase (ALK) also known as ALK tyrosine kinase receptor or CD246 is an enzyme that in humans is encoded by the ALK gene.

<span class="mw-page-title-main">ARIAD Pharmaceuticals</span> Defunct oncology company

ARIAD Pharmaceuticals, Inc. was an American oncology company, now part of Takeda Oncology, which was founded in 1991 by Harvey J. Berger, M.D. and headquartered in Cambridge, Massachusetts. ARIAD engaged in the discovery, development, and commercialization of medicines for cancer patients.

<span class="mw-page-title-main">Omacetaxine mepesuccinate</span> Chemical compound

Omacetaxine mepesuccinate is a pharmaceutical drug substance that is indicated for treatment of chronic myeloid leukemia (CML).

<span class="mw-page-title-main">Brian Druker</span> American physician-scientist

Brian J. Druker is a physician-scientist at Oregon Health & Science University (OHSU), in Portland, Oregon. He is the director of OHSU's Knight Cancer Institute, JELD-WEN Chair of Leukemia Research, Associate Dean for Oncology in the OHSU School of Medicine, and professor of medicine.

<span class="mw-page-title-main">Crizotinib</span> ALK inhibitor for treatment of non-small-cell lung cancer

Crizotinib, sold under the brand name Xalkori among others, is an anti-cancer medication used for the treatment of non-small cell lung carcinoma (NSCLC). Crizotinib inhibits the c-Met/Hepatocyte growth factor receptor (HGFR) tyrosine kinase, which is involved in the oncogenesis of a number of other histological forms of malignant neoplasms. It also acts as an ALK and ROS1 inhibitor.

<span class="mw-page-title-main">ALK inhibitor</span>

ALK inhibitors are anti-cancer drugs that act on tumours with variations of anaplastic lymphoma kinase (ALK) such as an EML4-ALK translocation. They fall under the category of tyrosine kinase inhibitors, which work by inhibiting proteins involved in the abnormal growth of tumour cells. All the current approved ALK inhibitors function by binding to the ATP pocket of the abnormal ALK protein, blocking its access to energy and deactivating it. A majority of ALK-rearranged NSCLC harbour the EML4-ALK fusion, although as of 2020, over 92 fusion partners have been discovered in ALK+ NSCLC. For each fusion partner, there can be several fusion variants depending on the position the two genes were fused at, and this may have implications on the response of the tumour and prognosis of the patient.

Bcr-Abl tyrosine-kinase inhibitors (TKI) are the first-line therapy for most patients with chronic myelogenous leukemia (CML). More than 90% of CML cases are caused by a chromosomal abnormality that results in the formation of a so-called Philadelphia chromosome. This abnormality was discovered by Peter Nowell in 1960 and is a consequence of fusion between the Abelson (Abl) tyrosine kinase gene at chromosome 9 and the break point cluster (Bcr) gene at chromosome 22, resulting in a chimeric oncogene (Bcr-Abl) and a constitutively active Bcr-Abl tyrosine kinase that has been implicated in the pathogenesis of CML. Compounds have been developed to selectively inhibit the tyrosine kinase.

<span class="mw-page-title-main">SETBP1</span> Protein-coding gene in the species Homo sapiens

SET binding protein 1 is a protein that in humans is encoded by the SETBP1 gene.

<span class="mw-page-title-main">Ponatinib</span> Medication

Ponatinib, sold under the brand name Iclusig, is a medication used for the treatment of chronic myeloid leukemia and Philadelphia chromosome–positive (Ph+) acute lymphoblastic leukemia. It was developed by Ariad Pharmaceuticals. It is a multi-targeted tyrosine-kinase inhibitor. Some forms of chronic myeloid leukemia, those that have the T315I mutation, are resistant to current therapies such as imatinib. Ponatinib has been designed to be effective against these types of tumors.

Atypical chronic myeloid leukemia (aCML) is a type of leukemia. It is a heterogeneous disorder belonging to the group of myelodysplastic/myeloproliferative (MDS/MPN) syndromes.

<span class="mw-page-title-main">Tessa Holyoake</span> Scottish oncology physician and leukemia researcher

Tessa Laurie Holyoake, was a Scottish haematology-oncology physician. She specialised in chronic myeloid leukaemia (CML), and discovered its stem cell. She was considered a world leading expert in leukaemia research.

<span class="mw-page-title-main">Brunangelo Falini</span> Italian hematologist, academic and researcher

Brunangelo Falini is an Italian hematologist, academic and researcher. He is a Full Professor of Hematology, and Head of the Institute of Hematology and Bone Marrow Transplantation at University of Perugia.

References

  1. Gambacorti-Passerini, C (2008). "Part I: Milestones in personalised medicine--imatinib". Lancet Oncology. 9 (600): 600. doi:10.1016/S1470-2045(08)70152-9. PMID   18510992. S2CID   41907624.
  2. "ILTE study page" . Retrieved 2012-04-28.
  3. Gambacorti-Passerini, C; Antolini, L; Mahon, F-X; et al. (2011). "Multicenter Independent Assessment of Outcomes in Chronic Myeloid Leukemia Patients Treated With Imatinib". J. Natl. Cancer Inst. 103 (7): 553–561. doi: 10.1093/jnci/djr060 . PMID   21422402.
  4. Gambacorti-Passerini C et al. "Clinical Activity of Crizotinib In Advanced, Chemoresistant ALK+ Lymphoma Patients". 2010 Annual Meeting of the American Society of Hematology, Orlando, Florida
  5. Gambacorti-Passerini, C; Messa, C; Pogliani, EM (2011). "Crizotinib in Anaplastic Large Cell Lymphoma". N. Engl. J. Med. 364 (8): 775–776. doi: 10.1056/nejmc1013224 . PMID   21345110.
  6. Gambacorti Passerini, C; Farina, F; Stasia, A; et al. (2014). "Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients". J Natl Cancer Inst. 106 (2): djt378. doi: 10.1093/jnci/djt378 . PMID   24491302.
  7. Gambacorti-Passerini C, Luciani S. Tu sarai la prima. Ledizioni, Milano, 2019, ISBN   9788867059263, ISBN   9788867059706
  8. Piazza, R; Valletta, S; Winkelmann, N; et al. (2013). "Recurrent SETBP1 mutations in atypical chronic myeloid leukemia". Nat Genet. 45 (1): 18–24. doi:10.1038/ng.2495. PMC   3588142 . PMID   23222956.
  9. Gambacorti-Passerini, C; Donadoni, C; Parmiani, A; et al. (2015). "Recurrent ETNK1 mutations in atypical chronic myeloid leukemia". Blood. 125 (3): 499–503. doi: 10.1182/blood-2014-06-579466 . hdl: 2318/157509 . PMID   25343957.
  10. Piazza R, Magistroni V, Redaelli S,...and Gambacorti-Passerini C. SETBP1 induces transcription of a network of development genes by acting as an epigenetic hub. Nature Communications 2018; 9(1): 2192. doi: 10.1038/s41467-018-04462-8
  11. Fontana D, Mauri M, Renso R,...and Gambacorti-Passerini C. ETNK1 mutations induce a mutator phenotype that can be reverted with phosphoethanolamine. Nat Commun. 2020;11(1):5938.doi: 10.1038/s41467-020-19721-w