Carlos A. Coello Coello

Last updated
Carlos A. Coello Coello
CitizenshipMexican
Alma mater Tulane University
Scientific career
Institutions CINVESTAV, UNSW
Doctoral students Adriana Lara
Coello.jpg

Carlos A. Coello Coello is a Mexican computer scientist, Professor at the UNSW School of Engineering and Information Technology, and researcher at the CINVESTAV. His paper "Evolutionary algorithms for solving multi-objective problems" has been cited over 7,800 times. [1] He won the IEEE Kiyo Tomiyasu Award in 2013. [2]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Particle swarm optimization</span> Iterative simulation method

In computational science, particle swarm optimization (PSO) is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. It solves a problem by having a population of candidate solutions, here dubbed particles, and moving these particles around in the search-space according to simple mathematical formulae over the particle's position and velocity. Each particle's movement is influenced by its local best known position, but is also guided toward the best known positions in the search-space, which are updated as better positions are found by other particles. This is expected to move the swarm toward the best solutions.

<span class="mw-page-title-main">Ant colony optimization algorithms</span> Optimization algorithm

In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems that can be reduced to finding good paths through graphs. Artificial ants represent multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of artificial ants and local search algorithms have become a preferred method for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and internet routing.

Metaheuristic in computer science and mathematical optimization is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a subset of solutions which is otherwise too large to be completely enumerated or otherwise explored. Metaheuristics may make relatively few assumptions about the optimization problem being solved and so may be usable for a variety of problems. Their use is always of interest when exact or other (approximate) methods are not available or are not expedient, either because the calculation time is too long or because, for example, the solution provided is too imprecise.

Artificial immune systems (AIS) are a class of rule-based machine learning systems inspired by the principles and processes of the vertebrate immune system. The algorithms are typically modeled after the immune system's characteristics of learning and memory for use in problem-solving.

Kalyanmoy Deb is an Indian computer scientist. Deb is the Herman E. & Ruth J. Koenig Endowed Chair Professor in the Department of Electrical and Computing Engineering at Michigan State University. Deb is also a professor in the Department of Computer Science and Engineering and the Department of Mechanical Engineering at Michigan State University.

IEEE Transactions on Evolutionary Computation is a bimonthly peer-reviewed scientific journal published by the IEEE Computational Intelligence Society. It covers evolutionary computation and related areas including nature-inspired algorithms, population-based methods, and optimization where selection and variation are integral, and hybrid systems where these paradigms are combined. The editor-in-chief is Carlos A. Coello Coello (CINVESTAV). According to the Journal Citation Reports, the journal has a 2021 impact factor of 16.497.

Multi-objective optimization or Pareto optimization is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective is a type of vector optimization that has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives.

James Kennedy is an American social psychologist, best known as an originator and researcher of particle swarm optimization. The first papers on the topic, by Kennedy and Russell C. Eberhart, were presented in 1995; since then tens of thousands of papers have been published on particle swarms. The Academic Press / Morgan Kaufmann book, Swarm Intelligence, by Kennedy and Eberhart with Yuhui Shi, was published in 2001.

Design Automation usually refers to electronic design automation, or Design Automation which is a Product Configurator. Extending Computer-Aided Design (CAD), automated design and Computer-Automated Design (CAutoD) are more concerned with a broader range of applications, such as automotive engineering, civil engineering, composite material design, control engineering, dynamic system identification and optimization, financial systems, industrial equipment, mechatronic systems, steel construction, structural optimisation, and the invention of novel systems.

<span class="mw-page-title-main">Meta-optimization</span>

Meta-optimization from numerical optimization is the use of one optimization method to tune another optimization method. Meta-optimization is reported to have been used as early as in the late 1970s by Mercer and Sampson for finding optimal parameter settings of a genetic algorithm.

<span class="mw-page-title-main">Evolutionary multimodal optimization</span>

In applied mathematics, multimodal optimization deals with optimization tasks that involve finding all or most of the multiple solutions of a problem, as opposed to a single best solution. Evolutionary multimodal optimization is a branch of evolutionary computation, which is closely related to machine learning. Wong provides a short survey, wherein the chapter of Shir and the book of Preuss cover the topic in more detail.

Multi-swarm optimization is a variant of particle swarm optimization (PSO) based on the use of multiple sub-swarms instead of one (standard) swarm. The general approach in multi-swarm optimization is that each sub-swarm focuses on a specific region while a specific diversification method decides where and when to launch the sub-swarms. The multi-swarm framework is especially fitted for the optimization on multi-modal problems, where multiple (local) optima exist.

In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as convergence rate, precision, robustness and general performance.

The constructive cooperative coevolutionary algorithm (also called C3) is a global optimisation algorithm in artificial intelligence based on the multi-start architecture of the greedy randomized adaptive search procedure (GRASP). It incorporates the existing cooperative coevolutionary algorithm (CC). The considered problem is decomposed into subproblems. These subproblems are optimised separately while exchanging information in order to solve the complete problem. An optimisation algorithm, usually but not necessarily an evolutionary algorithm, is embedded in C3 for optimising those subproblems. The nature of the embedded optimisation algorithm determines whether C3's behaviour is deterministic or stochastic.

The Genetic and Evolutionary Computation Conference (GECCO) is the premier conference in the area of genetic and evolutionary computation. GECCO has been held every year since 1999, when it was first established as a recombination of the International Conference on Genetic Algorithms (ICGA) and the Annual Genetic Programming Conference (GP).

Fish School Search (FSS), proposed by Bastos Filho and Lima Neto in 2008 is, in its basic version, an unimodal optimization algorithm inspired on the collective behavior of fish schools. The mechanisms of feeding and coordinated movement were used as inspiration to create the search operators. The core idea is to make the fishes “swim” toward the positive gradient in order to “eat” and “gain weight”. Collectively, the heavier fishes have more influence on the search process as a whole, what makes the barycenter of the fish school moves toward better places in the search space over the iterations.

This is a chronological table of metaheuristic algorithms that only contains fundamental computational intelligence algorithms. Hybrid algorithms and multi-objective algorithms are not listed in the table below.

<span class="mw-page-title-main">Maurice Clerc (mathematician)</span> French mathematician

Maurice Clerc is a French mathematician.

Adriana Lara López is a Mexican computer scientist whose research involves evolutionary computation, memetic algorithms, and multi-objective optimization. She is a professor in the school of physics and mathematics at the Instituto Politécnico Nacional in Mexico.

References

  1. "Dr. Carlos A. Coello Coello". Departamento de Computación - CINVESTAV. Retrieved 25 February 2020.
  2. "Carlos A. Coello Coello - Engineering and Technology History Wiki". ethw.org.