Casey's theorem

Last updated

In mathematics, Casey's theorem, also known as the generalized Ptolemy's theorem, is a theorem in Euclidean geometry named after the Irish mathematician John Casey.

Contents

Formulation of the theorem

t
12
[?]
t
34
+
t
14
[?]
t
23
-
t
13
[?]
t
24
=
0
{\displaystyle t_{12}\cdot t_{34}+t_{14}\cdot t_{23}-t_{13}\cdot t_{24}=0} Casey new1a.svg

Let be a circle of radius . Let be (in that order) four non-intersecting circles that lie inside and tangent to it. Denote by the length of the exterior common bitangent of the circles . Then: [1]

Note that in the degenerate case, where all four circles reduce to points, this is exactly Ptolemy's theorem.

Proof

The following proof is attributable [2] to Zacharias. [3] Denote the radius of circle by and its tangency point with the circle by . We will use the notation for the centers of the circles. Note that from Pythagorean theorem,

We will try to express this length in terms of the points . By the law of cosines in triangle ,

Since the circles tangent to each other:

Let be a point on the circle . According to the law of sines in triangle :

Therefore,

and substituting these in the formula above:

And finally, the length we seek is

We can now evaluate the left hand side, with the help of the original Ptolemy's theorem applied to the inscribed quadrilateral :

Further generalizations

It can be seen that the four circles need not lie inside the big circle. In fact, they may be tangent to it from the outside as well. In that case, the following change should be made: [4]

If are both tangent from the same side of (both in or both out), is the length of the exterior common tangent.

If are tangent from different sides of (one in and one out), is the length of the interior common tangent.

The converse of Casey's theorem is also true. [4] That is, if equality holds, the circles are tangent to a common circle.

Applications

Casey's theorem and its converse can be used to prove a variety of statements in Euclidean geometry. For example, the shortest known proof [1] :411 of Feuerbach's theorem uses the converse theorem.

Related Research Articles

Circle Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant. The distance between any point of the circle and the centre is called the radius. Usually, the radius is required to be a positive number. A circle with is a degenerate case. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted.

Ellipse Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. As such, it generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

Quadrilateral Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". Another name for it is tetragon, derived from greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to e.g., pentagon. "Gon" being "angle" also is at the root of calling it quadrangle, 4-angle, in analogy to triangle. A quadrilateral with vertices , , and is sometimes denoted as .

Trigonometric functions Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

Triangle Shape with three sides

A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted .

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle from that point.

Altitude (triangle) Line segment in a triangle l

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the base. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

Incircle and excircles of a triangle Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

Incenter Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

Morleys trisector theorem 3 intersections of any triangles adjacent angle trisectors form an equilateral triangle

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all of the trisectors are intersected, one obtains four other equilateral triangles.

Ptolemys theorem Relates the 4 sides and 2 diagonals of a quadrilateral with vertices on a common circle

In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral. The theorem is named after the Greek astronomer and mathematician Ptolemy. Ptolemy used the theorem as an aid to creating his table of chords, a trigonometric table that he applied to astronomy.

Power of a point Relative distance of a point from a circle

In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826.

Sine and cosine Trigonometric functions of an angle

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

Steiner inellipse

In geometry, the Steiner inellipse, midpoint inellipse, or midpoint ellipse of a triangle is the unique ellipse inscribed in the triangle and tangent to the sides at their midpoints. It is an example of an inellipse. By comparison the inscribed circle and Mandart inellipse of a triangle are other inconics that are tangent to the sides, but not at the midpoints unless the triangle is equilateral. The Steiner inellipse is attributed by Dörrie to Jakob Steiner, and a proof of its uniqueness is given by Dan Kalman.

In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical constructions and proofs. Since the tangent line to a circle at a point P is perpendicular to the radius to that point, theorems involving tangent lines often involve radial lines and orthogonal circles.

Bicentric quadrilateral Type of shape

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and center of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

Pythagorean theorem Relation between sides of a right triangle

In mathematics, the Pythagorean theorem, or Pythagoras' theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides. This theorem can be written as an equation relating the lengths of the legs a, b and the hypotenuse c, often called the Pythagorean equation:

The trigonometry of a tetrahedron explains the relationships between the lengths and various types of angles of a general tetrahedron.

References

  1. 1 2 Casey, J. (1866). "On the Equations and Properties: (1) of the System of Circles Touching Three Circles in a Plane; (2) of the System of Spheres Touching Four Spheres in Space; (3) of the System of Circles Touching Three Circles on a Sphere; (4) of the System of Conics Inscribed to a Conic, and Touching Three Inscribed Conics in a Plane". Proceedings of the Royal Irish Academy. 9: 396–423. JSTOR   20488927.
  2. Bottema, O. (1944). Hoofdstukken uit de Elementaire Meetkunde. (translation by Reinie Erné as Topics in Elementary Geometry, Springer 2008, of the second extended edition published by Epsilon-Uitgaven 1987).
  3. Zacharias, M. (1942). "Der Caseysche Satz". Jahresbericht der Deutschen Mathematiker-Vereinigung . 52: 79–89.
  4. 1 2 Johnson, Roger A. (1929). Modern Geometry. Houghton Mifflin, Boston (republished facsimile by Dover 1960, 2007 as Advanced Euclidean Geometry).