Catabiosis

Last updated

Catabiosis is the process of growing older, aging and physical degradation.[ citation needed ]

The word comes from Greek "kata"—down, against, reverse and "biosis"—way of life and is generally used to describe senescence and degeneration in living organisms and biophysics of aging in general.[ citation needed ]

One of the popular catabiotic theories is the entropy theory of aging, where aging is characterized by thermodynamically favourable increase in structural disorder. Living organisms are open systems that take free energy from the environment and offload their entropy as waste. However, basic components of living systems—DNA, proteins, lipids and sugars—tend towards the state of maximum entropy while continuously accumulating damages causing catabiosis of the living structure. [ citation needed ]

Catabiotic force on the contrary is the influence exerted by living structures on adjoining cells, by which the latter are developed in harmony with the primary structures. [ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Energy</span> Physical quantity

Energy is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light. Energy is a conserved quantity—the law of conservation of energy states that energy can be converted in form, but not created or destroyed; matter and energy may also be converted to one another. The unit of measurement for energy in the International System of Units (SI) is the joule (J).

<span class="mw-page-title-main">Biophysics</span> Study of biological systems using methods from the physical sciences

Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. Biophysics covers all scales of biological organization, from molecular to organismic and populations. Biophysical research shares significant overlap with biochemistry, molecular biology, physical chemistry, physiology, nanotechnology, bioengineering, computational biology, biomechanics, developmental biology and systems biology.

<span class="mw-page-title-main">Cell theory</span> Biology of cells

In biology, cell theory is a scientific theory first formulated in the mid-nineteenth century, that living organisms are made up of cells, that they are the basic structural/organizational unit of all organisms, and that all cells come from pre-existing cells. Cells are the basic unit of structure in all living organisms and also the basic unit of reproduction.

<span class="mw-page-title-main">Second law of thermodynamics</span> Physical law for entropy and heat

The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions. A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter. Another statement is: "Not all heat can be converted into work in a cyclic process."

A dissipative system is a thermodynamically open system which is operating out of, and often far from, thermodynamic equilibrium in an environment with which it exchanges energy and matter. A tornado may be thought of as a dissipative system. Dissipative systems stand in contrast to conservative systems.

Information metabolism, sometimes referred to as informational metabolism or energetic-informational metabolism, is a psychological theory of interaction between biological organisms and their environment, developed by Polish psychiatrist Antoni Kępiński.

<span class="mw-page-title-main">Irreversible process</span> Process that cannot be undone

In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics. All complex natural processes are irreversible, although a phase transition at the coexistence temperature is well approximated as reversible.

<i>What Is Life?</i> 1944 non-fiction science book by Erwin Schrödinger

What Is Life? The Physical Aspect of the Living Cell is a 1944 science book written for the lay reader by physicist Erwin Schrödinger. The book was based on a course of public lectures delivered by Schrödinger in February 1943, under the auspices of the Dublin Institute for Advanced Studies, where he was Director of Theoretical Physics, at Trinity College, Dublin. The lectures attracted an audience of about 400, who were warned "that the subject-matter was a difficult one and that the lectures could not be termed popular, even though the physicist’s most dreaded weapon, mathematical deduction, would hardly be utilized." Schrödinger's lecture focused on one important question: "how can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry?"

Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from the future. In thermodynamic systems that are not isolated, local entropy can decrease over time, accompanied by a compensating entropy increase in the surroundings; examples include objects undergoing cooling, living systems, and the formation of typical crystals.

<span class="mw-page-title-main">Entropy (order and disorder)</span> Interpretation of entropy as the change in arrangement of a systems particles

In thermodynamics, entropy is often associated with the amount of order or disorder in a thermodynamic system. This stems from Rudolf Clausius' 1862 assertion that any thermodynamic process always "admits to being reduced [reduction] to the alteration in some way or another of the arrangement of the constituent parts of the working body" and that internal work associated with these alterations is quantified energetically by a measure of "entropy" change, according to the following differential expression:

Research concerning the relationship between the thermodynamic quantity entropy and both the origin and evolution of life began around the turn of the 20th century. In 1910 American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of thermodynamics and on the principle of entropy.

<span class="mw-page-title-main">Branches of science</span> Subdivisions of science defined by their scope

The branches of science, also referred to as sciences, scientificfields or scientific disciplines, are commonly divided into three major groups:

<span class="mw-page-title-main">Living systems</span> Multiple interactions and regulation of life forms with their environment

Living systems are life forms treated as a system. They are said to be open self-organizing and said to interact with their environment. These systems are maintained by flows of information, energy and matter. Multiple theories of living systems have been proposed. Such theories attempt to map general principles for how all living systems work.

<span class="mw-page-title-main">Lloyd Demetrius</span> American mathematician

Lloyd A. Demetrius is an American mathematician and theoretical biologist at the Department of Organismic and Evolutionary biology, Harvard University. He is best known for the discovery of the concept of evolutionary entropy, a statistical parameter that characterizes Darwinian fitness in models of evolutionary processes at various levels of biological organization – molecular, organismic and social. Evolutionary entropy, a generalization of the Gibbs-Boltzmann entropy in statistical thermodynamics, is the cornerstone of directionality theory, an analytical study of evolution by variation and selection. The theory has applications to: a) the development of aging and the evolution of longevity; b) the origin and progression of age related diseases such as cancer, and neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease; c) the evolution of cooperation and the spread of inequality.

<span class="mw-page-title-main">Information</span> Facts provided or learned about something or someone

Information is an abstract concept that refers to something which has the power to inform. At the most fundamental level, it pertains to the interpretation of that which may be sensed, or their abstractions. Any natural process that is not completely random and any observable pattern in any medium can be said to convey some amount of information. Whereas digital signals and other data use discrete signs to convey information, other phenomena and artifacts such as analogue signals, poems, pictures, music or other sounds, and currents convey information in a more continuous form. Information is not knowledge itself, but the meaning that may be derived from a representation through interpretation.

An organism is defined in a medical dictionary as any living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have been proposed to define what an organism is. Among the most common is that an organism has autonomous reproduction, growth, and metabolism. This would exclude viruses, despite the fact that they evolve like organisms. Other problematic cases include colonial organisms; a colony of eusocial insects is organised adaptively, and has germ-soma specialisation, with some insects reproducing, others not, like cells in an animal's body. The body of a siphonophore, a jelly-like marine animal, is composed of organism-like zooids, but the whole structure looks and functions much like an animal such as a jellyfish, the parts collaborating to provide the functions of the colonial organism.

The following outline is provided as an overview of and topical guide to biophysics:

<i>Incomplete Nature</i> 2011 book by Terrence Deacon

Incomplete Nature: How Mind Emerged from Matter is a 2011 book by biological anthropologist Terrence Deacon. The book covers topics in biosemiotics, philosophy of mind, and the origins of life. Broadly, the book seeks to naturalistically explain "aboutness", that is, concepts like intentionality, meaning, normativity, purpose, and function; which Deacon groups together and labels as ententional phenomena.

The following index is provided as an overview of and topical guide to science: Links to articles and redirects to sections of articles which provide information on each topic are listed with a short description of the topic. When there is more than one article with information on a topic, the most relevant is usually listed, and it may be cross-linked to further information from the linked page or section.

Vladimir Nikolajevich Pokrovskii is a Russian scientist known for his original contributions to polymer physics and economic theory. He was the founder of the Altai school of dynamics of nonlinear fluids.

References