Catch connective tissue

Last updated

Catch connective tissue [1] [2] [3] (also called mutable collagenous tissue) is a kind of connective tissue found in echinoderms (such as starfish and sea cucumbers) which can change its mechanical properties in a few seconds or minutes through nervous control rather than by muscular means.

Contents

Connective tissue, including dermis, tendons and ligaments, is one of four main animal tissues. Usual connective tissue does not change its stiffness except in the slow process of aging. Catch connective tissue, however, shows rapid, large and reversible stiffness changes in response to stimulation under nervous control. This connective tissue is specific to echinoderms in which it works in posture maintenance and mechanical defense with low energy expenditure, and in body fission and autotomy. The stiffness changes of this tissue are due to the changes in the stiffness of extracellular materials. The small amount of muscle cells that are sometimes found scattered in this tissue has little influence on the stiffness-change mechanisms.

Tissue distribution

Catch connective tissue is found in all the extant classes of echinoderms.

Early echinoderms were sessile organisms that fed on suspended particles carried by water currents. Their body was covered with imbricate small skeletal plates. The arrangement of plates suggests that plates worked as sliding joints so as animals to be able to change their body shape: they could possibly take an extended feeding posture and a flat "hiding" posture. The body plates might be connected with catch connective tissue that allowed early echinoderms such postural changes. [4]

Mechanism of stiffness changes

Detailed mechanical properties and their changes have been studied only in sea-cucumber dermis. Its mechanical properties are determined by the extracellular materials that are made of collagen fibrils embedded in a hydrogel of proteoglycans. The dermis takes three mechanical states: soft (S1), standard (S2) and stiff (S3). [5] Animals without stimulation takes the standard state S2. Different molecular mechanisms of stiffening have been found in the transition S1→S2 and in the transition S2→S3. Three proteins that cause stiffness changes have been isolated from sea cucumbers. Tensilin causes the change S1→S2 increasing cohesive forces between collagens, whereas softening causes the change in the reverse direction; NSF induces S2→S3. [6] [7] [8] There are cross bridges between collagen fibrils. The number of bridges increases in the order S1<S2<S3. [9]

Nervous control

The mechanical states of catch connective tissue are under nervous control and thus we can regard this tissue as one of neurally controlled mechano-effectors such as muscles. It is found in the sea-urchin spine joints that the stiffness of catch connective tissue changes in the coordinated manner with the muscle contractions. [10] One of the characteristic cells found in catch connective tissue is juxtaligamental cells containing secretory granules. [11] These cells are supposed to contain proteins controlling stiffness of extracellular materials. When stained with the antibody specific to echinoderm nerves sea-cucumber body wall is supplied with immunoreactive fine fibers running among the collagen fibrils. Pharmacological experiments suggested the presence of two types of cholinergic systems, one is the nicotinic one involved in the dermal stiffening and the other is the muscarinic one involved in softening. Cholinergic nerves seem to control the secretory activities of juxtaligamental cells. The presence of the cholinergic system was supported by the neuropeptide stichopin that inhibits the action of stiffening cholinergic systems. Stichopin is one of four new peptides in the dermis of sea cucumbers. [12] Other ones are the neuropeptide NGIWYamide that stiffens the dermis and two holokinins that soften the dermis. The nerves containing these neuropeptides possibly control the secretory activities of juxtaligamental cells.

Related Research Articles

<span class="mw-page-title-main">Collagen</span> Most abundant structural protein in animals

Collagen is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole-body protein content. Collagen consists of amino acids bound together to form a triple helix of elongated fibril known as a collagen helix. It is mostly found in connective tissue such as cartilage, bones, tendons, ligaments, and skin. Vitamin C is vital for collagen synthesis, and Vitamin E improves the production of collagen.

<span class="mw-page-title-main">Skeleton</span> Part of the body that forms the supporting structure

A skeleton is the structural frame that supports the body of most animals. There are several types of skeletons, including the exoskeleton, which is a rigid outer shell that holds up an organism's shape; the endoskeleton, a rigid internal frame to which the organs and soft tissues attach; and the hydroskeleton, a flexible internal structure supported by the hydrostatic pressure of body fluids.

<span class="mw-page-title-main">Skin</span> Soft outer covering organ of vertebrates

Skin is the layer of usually soft, flexible outer tissue covering the body of a vertebrate animal, with three main functions: protection, regulation, and sensation.

<span class="mw-page-title-main">Vocal cords</span> Folds of throat tissues that help to create sounds through vocalization

In humans, the vocal cords, also known as vocal folds, are folds of throat tissues that are key in creating sounds through vocalization. The size of vocal cords affects the pitch of voice. Open when breathing and vibrating for speech or singing, the folds are controlled via the recurrent laryngeal branch of the vagus nerve. They are composed of twin infoldings of mucous membrane stretched horizontally, from back to front, across the larynx. They vibrate, modulating the flow of air being expelled from the lungs during phonation.

<span class="mw-page-title-main">Echinoderm</span> Exclusively marine phylum of animals with generally 5-point radial symmetry

An echinoderm is any deuterostomal animal of the phylum Echinodermata, which includes starfish, brittle stars, sea urchins, sand dollars and sea cucumbers, as well as the sessile sea lilies or "stone lilies". While bilaterally symmetrical as larvae, as adults echinoderms are recognisable by their usually five-pointed radial symmetry, and are found on the sea bed at every ocean depth from the intertidal zone to the abyssal zone. The phylum contains about 7,000 living species, making it the second-largest group of deuterostomes after the chordates, as well as the largest marine-only phylum. The first definitive echinoderms appeared near the start of the Cambrian.

<span class="mw-page-title-main">Tendon</span> Type of tissue that connects muscle to bone

A tendon or sinew is a tough band of dense fibrous connective tissue that connects muscle to bone. It sends the mechanical forces of muscle contraction to the skeletal system, while withstanding tension.

<span class="mw-page-title-main">Sea cucumber</span> Class of echinoderms

Sea cucumbers are echinoderms from the class Holothuroidea. They are marine animals with a leathery skin and an elongated body containing a single, branched gonad. They are found on the sea floor worldwide. The number of known holothurian species worldwide is about 1,786, with the greatest number being in the Asia-Pacific region. Many of these are gathered for human consumption and some species are cultivated in aquaculture systems. The harvested product is variously referred to as trepang, namako, bêche-de-mer, or balate. Sea cucumbers serve a useful role in the marine ecosystem as they help recycle nutrients, breaking down detritus and other organic matter, after which bacteria can continue the decomposition process.

<span class="mw-page-title-main">Soft tissue</span> Tissue in the body that is not hardened by ossification

Soft tissue is all the tissue in the body that is not hardened by the processes of ossification or calcification such as bones and teeth. Soft tissue connects, surrounds or supports internal organs and bones, and includes muscle, tendons, ligaments, fat, fibrous tissue, lymph and blood vessels, fasciae, and synovial membranes. 

<span class="mw-page-title-main">Basement membrane</span> Thin fibrous layer between the cells and the adjacent connective tissue in animals

The basement membrane, also known as base membrane, is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tissues including mesothelium and endothelium, and the underlying connective tissue.

<span class="mw-page-title-main">Fibril</span> Thin Fibre

Fibrils are structural biological materials found in nearly all living organisms. Not to be confused with fibers or filaments, fibrils tend to have diameters ranging from 10–100 nanometers. Fibrils are not usually found alone but rather are parts of greater hierarchical structures commonly found in biological systems. Due to the prevalence of fibrils in biological systems, their study is of great importance in the fields of microbiology, biomechanics, and materials science.

FACIT collagen is a type of collagen and also a proteoglycan that have two or more triple-helical domains that connect to collagen fibrils and share protein domains with non-collagen matrix molecules. FACIT collagens derive their name from their association and interaction with fibrillar collagens. Unlike fibrillar collagens, which form long fibers.

Type V collagen is a form of fibrillar collagen associated with classical Ehlers-Danlos syndrome. It is found within the dermal/epidermal junction, placental tissues, as well as in association with tissues containing type I collagen.

<span class="mw-page-title-main">Collagen, type XVI, alpha 1</span> Protein found in humans

Collagen alpha-1(XVI) chain is a protein that in humans is encoded by the COL16A1 gene.

Histology is the study of the minute structure, composition, and function of tissues. Mature human vocal cords are composed of layered structures which are quite different at the histological level.

Acellular dermis is a type of biomaterial derived from processing human or animal tissues to remove cells and retain portions of the extracellular matrix (ECM). These materials are typically cell-free, distinguishing them from classical allografts and xenografts, can be integrated or incorporated into the body, and have been FDA approved for human use for more than 10 years in a wide range of clinical indications.

Role of skin in locomotion describes how the integumentary system is involved in locomotion. Typically the integumentary system can be thought of as skin, however the integumentary system also includes the segmented exoskeleton in arthropods and feathers of birds. The primary role of the integumentary system is to provide protection for the body. However, the structure of the skin has evolved to aid animals in their different modes of locomotion. Soft bodied animals such as starfish rely on the arrangement of the fibers in their tube feet for movement. Eels, snakes, and fish use their skin like an external tendon to generate the propulsive forces need for undulatory locomotion. Vertebrates that fly, glide, and parachute also have a characteristic fiber arrangements of their flight membranes that allows for the skin to maintain its structural integrity during the stress and strain experienced during flight.

Dermal fibroblasts are cells within the dermis layer of skin which are responsible for generating connective tissue and allowing the skin to recover from injury. Using organelles, dermal fibroblasts generate and maintain the connective tissue which unites separate cell layers. Furthermore, these dermal fibroblasts produce the protein molecules including laminin and fibronectin which comprise the extracellular matrix. By creating the extracellular matrix between the dermis and epidermis, fibroblasts allow the epithelial cells of the epidermis to affix the matrix, thereby allowing the epidermal cells to effectively join together to form the top layer of the skin.

<span class="mw-page-title-main">Ossicle (echinoderm)</span> Small calcium elements embedded in the dermis of the body wall of echinoderms

Ossicles are small calcareous elements embedded in the dermis of the body wall of echinoderms. They form part of the endoskeleton and provide rigidity and protection. They are found in different forms and arrangements in sea urchins, starfish, brittle stars, sea cucumbers, and crinoids. The ossicles and spines are the only parts of the animal likely to be fossilized after an echinoderm dies.

<span class="mw-page-title-main">Chiridotidae</span> Family of sea cucumbers

Chiridotidae is a family of sea cucumbers found in the order Apodida. Within the family, there are 16 recognized genera all with different ranges of body types and functions. Sea cucumbers play a fundamental role in many marine ecosystems.

<span class="mw-page-title-main">Collagen loss</span>

Collagen loss is the gradual decrease of levels of collagen in the body. Collagen is the main structural protein found in the body's various connective tissues where it contributes to much of their strength and elasticity.

References

  1. Motokawa, T (2019). "Skin of sea cucumbers: the smart connective tissue that alters mechanical properties in response to external stimuli". Journal of Aero Aqua Bio-Mechanisms. 8: 2. doi: 10.5226/jabmech.8.2 . S2CID   104468881.
  2. Wilkie, I.C. (2005). "Mutable collagenous tissue: overview and biotechnological perspective". Prog. Mol. Subcell. Biol. Progress in Molecular and Subcellular Biology. 21: 221–250. doi:10.1007/3-540-27683-1_10. ISBN   3-540-24402-6. PMID   17152700.
  3. Motokawa, T (1984). "Connective tissue catch in echinoderms". Biol. Rev. 59 (2): 255. doi:10.1111/j.1469-185X.1984.tb00409.x. S2CID   86391676.
  4. Motokawa, T (1988). "Catch connective tissue: a key character for echinoderms' success". In Burke, R.D.; Mladenov, P.V.; Lambert, P.; Parsley, R.D. (eds.). Echinoderm Biology. Rotterdam: Balkema. p. 1988.
  5. Motokawa, T.; Tsuchi, A. (2003). "Dynamic mechanical properties of body-wall dermis in various mechanical states and their implications on behavior of sea cucumbers". Biol. Bull. 205 (3): 261–275. doi:10.2307/1543290. JSTOR   1543290. PMID   14672981. S2CID   21759312.
  6. Yamada, A.; Tamori, M.; Iketani, T.; Oiwa, K.; Motokawa, T. (2010). "A novel stiffening factor inducing the stiffest state of holothurian catch connective tissue". J. Exp. Biol. 213 (Pt 20): 3416–3422. doi:10.1242/jeb.044149. PMID   20889821. S2CID   10401406.
  7. Takehana, Y.; Yamada, A.; Tamori, M.; Motokawa, T. (2014). "Softenin, a novel protein that softens the connective tissue of sea cucumbers through inhibiting interaction between collagen fibrils". PLOS ONE. 9 (4): e0195836. doi: 10.1371/journal.pone.0195836 . PMC   5897022 . PMID   29649336.
  8. Tipper, P.; Lyons-Levi, G.; Atkinson, M.A.I.; Trotter, J.A. (2003). "Purification, characterization and cloning of tensilin, the collagen-fibril binding and tissue stiffening factor from Cucumaria frondosa dermis". Matrix Biol. 21 (8): 625–635. doi:10.1016/S0945-053X(02)00090-2. PMID   12524049.
  9. Tamori, M.; Ishida, K.; Matsuura, E.; Ogasawara, K.; Hanasaka, T.; Takehana, Y.; Motokawa, T.; Osawa, T. (2016). "Ultrastructural changes associated with reversible stiffening in catch connective tissue of sea cucumbers". PLOS ONE. 11 (5): e0155673. Bibcode:2016PLoSO..1155673T. doi: 10.1371/journal.pone.0155673 . PMC   4871580 . PMID   27192546.
  10. Motokawa, T.; Fuchigami, Y. (2015). "Coordination between catch connective tissue and muscles through nerves in the spine joint of the sea urchin Diadema setosum". J. Exp. Biol. 218 (Pt 5): 703–710. doi: 10.1242/jeb.115972 . PMID   25740901. S2CID   1320567.
  11. Wilkie, I.C. "The juxtaligamental cells of Ophiocomina nigra (Abildgaard) (Echinodermata: Ophiuroidea) and their possible role in mechano- effector function of collagenous tissue". Cell Tissue Res. 197 (1979): 515.
  12. Birenheide, R.; Tamori, M.; Motokawa, T.; Ohtani, M.; Iwakoshi, E.; Muneoka, Y.; Fujita, T.; Minakata, H.; Nomoto, K. (1998). "Peptides controlling stiffness of connective tissue in sea cucumbers". Biol. Bull. 194 (3): 253–259. doi:10.2307/1543095. JSTOR   1543095. PMID   9664654.