Causal graph

Last updated

In statistics, econometrics, epidemiology, genetics and related disciplines, causal graphs (also known as path diagrams, causal Bayesian networks or DAGs) are probabilistic graphical models used to encode assumptions about the data-generating process.

Contents

Causal graphs can be used for communication and for inference. They are complementary to other forms of causal reasoning, for instance using causal equality notation. As communication devices, the graphs provide formal and transparent representation of the causal assumptions that researchers may wish to convey and defend. As inference tools, the graphs enable researchers to estimate effect sizes from non-experimental data, [1] [2] [3] [4] [5] derive testable implications of the assumptions encoded, [1] [6] [7] [8] test for external validity, [9] and manage missing data [10] and selection bias. [11]

Causal graphs were first used by the geneticist Sewall Wright [12] under the rubric "path diagrams". They were later adopted by social scientists [13] [14] [15] [16] [17] [18] and, to a lesser extent, by economists. [19] These models were initially confined to linear equations with fixed parameters. Modern developments have extended graphical models to non-parametric analysis, and thus achieved a generality and flexibility that has transformed causal analysis in computer science, epidemiology, [20] and social science. [21]

Construction and terminology

The causal graph can be drawn in the following way. Each variable in the model has a corresponding vertex or node and an arrow is drawn from a variable X to a variable Y whenever Y is judged to respond to changes in X when all other variables are being held constant. Variables connected to Y through direct arrows are called parents of Y, or "direct causes of Y," and are denoted by Pa(Y).

Causal models often include "error terms" or "omitted factors" which represent all unmeasured factors that influence a variable Y when Pa(Y) are held constant. In most cases, error terms are excluded from the graph. However, if the graph author suspects that the error terms of any two variables are dependent (e.g. the two variables have an unobserved or latent common cause) then a bidirected arc is drawn between them. Thus, the presence of latent variables is taken into account through the correlations they induce between the error terms, as represented by bidirected arcs.

Fundamental tools

A fundamental tool in graphical analysis is d-separation, which allows researchers to determine, by inspection, whether the causal structure implies that two sets of variables are independent given a third set. In recursive models without correlated error terms (sometimes called Markovian), these conditional independences represent all of the model's testable implications. [22]

Example

Suppose we wish to estimate the effect of attending an elite college on future earnings. Simply regressing earnings on college rating will not give an unbiased estimate of the target effect because elite colleges are highly selective, and students attending them are likely to have qualifications for high-earning jobs prior to attending the school. Assuming that the causal relationships are linear, this background knowledge can be expressed in the following structural equation model (SEM) specification.

Model 1

where represents the individual's qualifications prior to college, represents qualifications after college, contains attributes representing the quality of the college attended, and the individual's salary.

Figure 1: Unidentified model with latent variables (
Q
1
{\displaystyle Q_{1}}
and
Q
2
{\displaystyle Q_{2}}
) shown explicitly College notID.png
Figure 1: Unidentified model with latent variables ( and ) shown explicitly
Figure 2: Unidentified model with latent variables summarized College notID proj.png
Figure 2: Unidentified model with latent variables summarized

Figure 1 is a causal graph that represents this model specification. Each variable in the model has a corresponding node or vertex in the graph. Additionally, for each equation, arrows are drawn from the independent variables to the dependent variables. These arrows reflect the direction of causation. In some cases, we may label the arrow with its corresponding structural coefficient as in Figure 1.

If and are unobserved or latent variables their influence on and can be attributed to their error terms. By removing them, we obtain the following model specification:

Model 2

The background information specified by Model 1 imply that the error term of , , is correlated with C's error term, . As a result, we add a bidirected arc between S and C, as in Figure 2.

Figure 3: Identified model with latent variables (
Q
1
{\displaystyle Q_{1}}
and
Q
2
{\displaystyle Q_{2}}
) shown explicitly College.png
Figure 3: Identified model with latent variables ( and ) shown explicitly
Figure 4: Identified model with latent variables summarized College proj.png
Figure 4: Identified model with latent variables summarized

Since is correlated with and, therefore, , is endogenous and is not identified in Model 2. However, if we include the strength of an individual's college application, , as shown in Figure 3, we obtain the following model:

Model 3

By removing the latent variables from the model specification we obtain:

Model 4

with correlated with .

Now, is identified and can be estimated using the regression of on and . This can be verified using the single-door criterion, [1] [23] a necessary and sufficient graphical condition for the identification of a structural coefficients, like , using regression.

Related Research Articles

<span class="mw-page-title-main">Simpson's paradox</span> Error in statistical reasoning with groups

Simpson's paradox is a phenomenon in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the groups are combined. This result is often encountered in social-science and medical-science statistics, and is particularly problematic when frequency data are unduly given causal interpretations. The paradox can be resolved when confounding variables and causal relations are appropriately addressed in the statistical modeling.

A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

Simultaneous equations models are a type of statistical model in which the dependent variables are functions of other dependent variables, rather than just independent variables. This means some of the explanatory variables are jointly determined with the dependent variable, which in economics usually is the consequence of some underlying equilibrium mechanism. Take the typical supply and demand model: whilst typically one would determine the quantity supplied and demanded to be a function of the price set by the market, it is also possible for the reverse to be true, where producers observe the quantity that consumers demand and then set the price.

In mathematics, a Riccati equation in the narrowest sense is any first-order ordinary differential equation that is quadratic in the unknown function. In other words, it is an equation of the form

A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning.

<span class="mw-page-title-main">Spurious relationship</span> Apparent, but false, correlation between causally-independent variables

In statistics, a spurious relationship or spurious correlation is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third, unseen factor.

In statistics, path analysis is used to describe the directed dependencies among a set of variables. This includes models equivalent to any form of multiple regression analysis, factor analysis, canonical correlation analysis, discriminant analysis, as well as more general families of models in the multivariate analysis of variance and covariance analyses.

Belief propagation, also known as sum–product message passing, is a message-passing algorithm for performing inference on graphical models, such as Bayesian networks and Markov random fields. It calculates the marginal distribution for each unobserved node, conditional on any observed nodes. Belief propagation is commonly used in artificial intelligence and information theory, and has demonstrated empirical success in numerous applications, including low-density parity-check codes, turbo codes, free energy approximation, and satisfiability.

<span class="mw-page-title-main">Regression analysis</span> Set of statistical processes for estimating the relationships among variables

In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables. The most common form of regression analysis is linear regression, in which one finds the line that most closely fits the data according to a specific mathematical criterion. For example, the method of ordinary least squares computes the unique line that minimizes the sum of squared differences between the true data and that line. For specific mathematical reasons, this allows the researcher to estimate the conditional expectation of the dependent variable when the independent variables take on a given set of values. Less common forms of regression use slightly different procedures to estimate alternative location parameters or estimate the conditional expectation across a broader collection of non-linear models.

In statistics, econometrics, epidemiology and related disciplines, the method of instrumental variables (IV) is used to estimate causal relationships when controlled experiments are not feasible or when a treatment is not successfully delivered to every unit in a randomized experiment. Intuitively, IVs are used when an explanatory variable of interest is correlated with the error term (endogenous), in which case ordinary least squares and ANOVA give biased results. A valid instrument induces changes in the explanatory variable but has no independent effect on the dependent variable and is not correlated with the error term, allowing a researcher to uncover the causal effect of the explanatory variable on the dependent variable.

In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the input dataset and the output of the (linear) function of the independent variable.

<span class="mw-page-title-main">Log–log plot</span> 2D graphic with logarithmic scales on both axes

In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes. Power functions – relationships of the form – appear as straight lines in a log–log graph, with the exponent corresponding to the slope, and the coefficient corresponding to the intercept. Thus these graphs are very useful for recognizing these relationships and estimating parameters. Any base can be used for the logarithm, though most commonly base 10 are used.

In econometrics, endogeneity broadly refers to situations in which an explanatory variable is correlated with the error term. The distinction between endogenous and exogenous variables originated in simultaneous equations models, where one separates variables whose values are determined by the model from variables which are predetermined. Ignoring simultaneity in the estimation leads to biased estimates as it violates the exogeneity assumption of the Gauss–Markov theorem. The problem of endogeneity is often ignored by researchers conducting non-experimental research and doing so precludes making policy recommendations. Instrumental variable techniques are commonly used to mitigate this problem.

<span class="mw-page-title-main">Causal model</span> Conceptual model in philosophy of science

In the philosophy of science, a causal model is a conceptual model that describes the causal mechanisms of a system. Several types of causal notation may be used in the development of a causal model. Causal models can improve study designs by providing clear rules for deciding which independent variables need to be included/controlled for.

<span class="mw-page-title-main">Mediation (statistics)</span> Statistical model

In statistics, a mediation model seeks to identify and explain the mechanism or process that underlies an observed relationship between an independent variable and a dependent variable via the inclusion of a third hypothetical variable, known as a mediator variable. Rather than a direct causal relationship between the independent variable and the dependent variable, which is often false, a mediation model proposes that the independent variable influences the mediator variable, which in turn influences the dependent variable. Thus, the mediator variable serves to clarify the nature of the relationship between the independent and dependent variables.

<span class="mw-page-title-main">Snellius–Pothenot problem</span> Problem in trigonometry

In trigonometry, the Snellius–Pothenot problem is a problem first described in the context of planar surveying. Given three known points A, B, C, an observer at an unknown point P observes that the line segment AC subtends an angle α and the segment CB subtends an angle β; the problem is to determine the position of the point P..

<span class="mw-page-title-main">Errors-in-variables models</span> Regression models accounting for possible errors in independent variables

In statistics, errors-in-variables models or measurement error models are regression models that account for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses.

<span class="mw-page-title-main">Collider (statistics)</span> Variable that is causally influenced by two or more variables

In statistics and causal graphs, a variable is a collider when it is causally influenced by two or more variables. The name "collider" reflects the fact that in graphical models, the arrow heads from variables that lead into the collider appear to "collide" on the node that is the collider. They are sometimes also referred to as inverted forks.

A graphoid is a set of statements of the form, "X is irrelevant to Y given that we know Z" where X, Y and Z are sets of variables. The notion of "irrelevance" and "given that we know" may obtain different interpretations, including probabilistic, relational and correlational, depending on the application. These interpretations share common properties that can be captured by paths in graphs. The theory of graphoids characterizes these properties in a finite set of axioms that are common to informational irrelevance and its graphical representations.

In statistics, linear regression is a statistical model which estimates the linear relationship between a scalar response and one or more explanatory variables. The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable. If the explanatory variables are measured with error then errors-in-variables models are required, also known as measurement error models.

References

  1. 1 2 3 Pearl, Judea (2000). Causality . Cambridge, MA: MIT Press. ISBN   9780521773621.
  2. Tian, Jin; Pearl, Judea (2002). "A general identification condition for causal effects". Proceedings of the Eighteenth National Conference on Artificial Intelligence. ISBN   978-0-262-51129-2.
  3. Shpitser, Ilya; Pearl, Judea (2008). "Complete Identification Methods for the Causal Hierarchy" (PDF). Journal of Machine Learning Research. 9: 1941–1979.
  4. Huang, Y.; Valtorta, M. (2006). https://www.aaai.org/Papers/AAAI/2006/AAAI06-180.pdf.{{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)
  5. Bareinboim, Elias; Pearl, Judea (2012). "Causal Inference by Surrogate Experiments: z-Identifiability". Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence. arXiv: 1210.4842 . Bibcode:2012arXiv1210.4842B. ISBN   978-0-9749039-8-9.
  6. Tian, Jin; Pearl, Judea (2002). "On the Testable Implications of Causal Models with Hidden Variables". Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence. pp. 519–27. arXiv: 1301.0608 . Bibcode:2013arXiv1301.0608T. ISBN   978-1-55860-897-9.
  7. Shpitser, Ilya; Pearl, Judea (2008).{{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)
  8. Chen, Bryant; Pearl, Judea (2014). "Testable Implications of Linear Structural Equation Models". Proceedings of the AAAI Conference on Artificial Intelligence. 28. doi: 10.1609/aaai.v28i1.9065 . S2CID   1612893.
  9. Bareinmboim, Elias; Pearl, Judea (2014). "External Validity: From do-calculus to Transportability across Populations". Statistical Science. 29 (4): 579–595. arXiv: 1503.01603 . doi:10.1214/14-sts486. S2CID   5586184.
  10. Mohan, Karthika; Pearl, Judea; Tian, Jin (2013). "Graphical Models for Inference with Missing Data" (PDF). Advances in Neural Information Processing Systems.
  11. Bareinboim, Elias; Tian, Jin; Pearl, Judea (2014). "Recovering from Selection Bias in Causal and Statistical Inference". Proceedings of the AAAI Conference on Artificial Intelligence. 28. doi: 10.1609/aaai.v28i1.9074 .
  12. Wright, S. (1921). "Correlation and causation". Journal of Agricultural Research. 20: 557–585.
  13. Blalock, H. M. (1960). "Correlational analysis and causal inferences". American Anthropologist. 62 (4): 624–631. doi: 10.1525/aa.1960.62.4.02a00060 .
  14. Duncan, O. D. (1966). "Path analysis: Sociological examples". American Journal of Sociology. 72: 1–16. doi:10.1086/224256. S2CID   59428866.
  15. Duncan, O. D. (1976). "Introduction to structural equation models". American Journal of Sociology. 82 (3): 731–733. doi:10.1086/226377.
  16. Jöreskog, K. G. (1969). "A general approach to confirmatory maximum likelihood factor analysis". Psychometrika. 34 (2): 183–202. doi:10.1007/bf02289343. S2CID   186236320.
  17. Goldberger, A. S.; Duncan, O. D. (1973). Structural equation models in the social sciences. New York: Seminar Press.
  18. Goldberger, A. S. (1972). "Structural equation models in the social sciences". Econometrica. 40 (6): 979–1001. doi:10.2307/1913851. JSTOR   1913851.
  19. White, Halbert; Chalak, Karim; Lu, Xun (2011). "Linking granger causality and the pearl causal model with settable systems" (PDF). Causality in Time Series Challenges in Machine Learning. 5.
  20. Rothman, Kenneth J.; Greenland, Sander; Lash, Timothy (2008). Modern epidemiology. Lippincott Williams & Wilkins.
  21. Morgan, S. L.; Winship, C. (2007). Counterfactuals and causal inference: Methods and principles for social research. New York: Cambridge University Press.
  22. Geiger, Dan; Pearl, Judea (1993). "Logical and Algorithmic Properties of Conditional Independence". Annals of Statistics. 21 (4): 2001–2021. CiteSeerX   10.1.1.295.2043 . doi:10.1214/aos/1176349407.
  23. Chen, B.; Pearl, J (2014). "Graphical Tools for Linear Structural Equation Modeling" (PDF). Technical Report.