Causality (book)

Last updated

Causality: Models, Reasoning, and Inference
Causality 2009 Judea Pearl Book Cover.jpg
Author Judea Pearl
LanguageEnglish
Subject Causality
Publisher Cambridge University Press
Publication date
2000, 2009
Pages484
ISBN 978-0521895606

Causality: Models, Reasoning, and Inference (2000; [1] updated 2009 [2] ) is a book by Judea Pearl. [3] It is an exposition and analysis of causality. [4] [5] It is considered to have been instrumental in laying the foundations of the modern debate on causal inference in several fields including statistics, computer science and epidemiology. [6] In this book, Pearl espouses the Structural Causal Model (SCM) that uses structural equation modeling. [7] This model is a competing viewpoint to the Rubin causal model. Some of the material from the book was reintroduced in the more general-audience targeting The Book of Why.

Contents

Reviews

Pearl succeeds in bringing together in a general nonparametric framework the counterfactual tradition of causal analysis with the variants of structural equation modeling worth keeping. The graph theory that he uses to accomplish this fusion is often elegant. Thus, Causality is a major statement, which all who claim to know what causality is must read.

Stephen L. Morgan (2004) [8]

The book gave Pearl the 2001 Lakatos Award in Philosophy of Science. [9]

See also

Related Research Articles

Econometrics is an application of statistical methods to economic data in order to give empirical content to economic relationships. More precisely, it is "the quantitative analysis of actual economic phenomena based on the concurrent development of theory and observation, related by appropriate methods of inference". An introductory economics textbook describes econometrics as allowing economists "to sift through mountains of data to extract simple relationships". Jan Tinbergen is one of the two founding fathers of econometrics. The other, Ragnar Frisch, also coined the term in the sense in which it is used today.

Causality (also called causation, or cause and effect) is influence by which one event, process, state, or object (acause) contributes to the production of another event, process, state, or object (an effect) where the cause is partly responsible for the effect, and the effect is partly dependent on the cause. In general, a process has many causes, which are also said to be causal factors for it, and all lie in its past. An effect can in turn be a cause of, or causal factor for, many other effects, which all lie in its future. Some writers have held that causality is metaphysically prior to notions of time and space.

<span class="mw-page-title-main">Simpson's paradox</span> Probability and statistics phenomenon

Simpson's paradox is a phenomenon in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the groups are combined. This result is often encountered in social-science and medical-science statistics, and is particularly problematic when frequency data are unduly given causal interpretations. The paradox can be resolved when confounding variables and causal relations are appropriately addressed in the statistical modeling.

A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). It is one of several forms of causal notation. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

In statistics, path analysis is used to describe the directed dependencies among a set of variables. This includes models equivalent to any form of multiple regression analysis, factor analysis, canonical correlation analysis, discriminant analysis, as well as more general families of models in the multivariate analysis of variance and covariance analyses.

<span class="mw-page-title-main">Judea Pearl</span> Computer scientist (born 1936)

Judea Pearl is an Israeli-American computer scientist and philosopher, best known for championing the probabilistic approach to artificial intelligence and the development of Bayesian networks. He is also credited for developing a theory of causal and counterfactual inference based on structural models. In 2011, the Association for Computing Machinery (ACM) awarded Pearl with the Turing Award, the highest distinction in computer science, "for fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning". He is the author of several books, including the technical Causality: Models, Reasoning and Inference, and The Book of Why, a book on causality aimed at the general public.

<span class="mw-page-title-main">Trygve Haavelmo</span> Norwegian economist and econometrician

Trygve Magnus Haavelmo, born in Skedsmo, Norway, was an economist whose research interests centered on econometrics. He received the Nobel Memorial Prize in Economic Sciences in 1989.

Econometric models are statistical models used in econometrics. An econometric model specifies the statistical relationship that is believed to hold between the various economic quantities pertaining to a particular economic phenomenon. An econometric model can be derived from a deterministic economic model by allowing for uncertainty, or from an economic model which itself is stochastic. However, it is also possible to use econometric models that are not tied to any specific economic theory.

<span class="mw-page-title-main">Structural equation modeling</span> Form of causal modeling that fit networks of constructs to data

Structural equation modeling (SEM) is a diverse set of methods used by scientists doing both observational and experimental research. SEM is used mostly in the social and behavioral sciences but it is also used in epidemiology, business, and other fields. A definition of SEM is difficult without reference to technical language, but a good starting place is the name itself.

<span class="mw-page-title-main">Confounding</span> Variable or factor in causal inference

In causal inference, a confounder is a variable that influences both the dependent variable and independent variable, causing a spurious association. Confounding is a causal concept, and as such, cannot be described in terms of correlations or associations. The existence of confounders is an important quantitative explanation why correlation does not imply causation. Some notations are explicitly designed to identify the existence, possible existence, or non-existence of confounders in causal relationships between elements of a system.

In statistics, ignorability is a feature of an experiment design whereby the method of data collection does not depend on the missing data. A missing data mechanism such as a treatment assignment or survey sampling strategy is "ignorable" if the missing data matrix, which indicates which variables are observed or missing, is independent of the missing data conditional on the observed data.

<span class="mw-page-title-main">Causal model</span> Conceptual model in philosophy of science

In the philosophy of science, a causal model is a conceptual model that describes the causal mechanisms of a system. Several types of causal notation may be used in the development of a causal model. Causal models can improve study designs by providing clear rules for deciding which independent variables need to be included/controlled for.

<span class="mw-page-title-main">James Robins</span>

James M. Robins is an epidemiologist and biostatistician best known for advancing methods for drawing causal inferences from complex observational studies and randomized trials, particularly those in which the treatment varies with time. He is the 2013 recipient of the Nathan Mantel Award for lifetime achievement in statistics and epidemiology, and a recipient of the 2022 Rousseeuw Prize in Statistics, jointly with Miguel Hernán, Eric Tchetgen-Tchetgen, Andrea Rotnitzky and Thomas Richardson.

Causal analysis is the field of experimental design and statistics pertaining to establishing cause and effect. Typically it involves establishing four elements: correlation, sequence in time, a plausible physical or information-theoretical mechanism for an observed effect to follow from a possible cause, and eliminating the possibility of common and alternative ("special") causes. Such analysis usually involves one or more artificial or natural experiments.

<span class="mw-page-title-main">Collider (statistics)</span> Variable that is causally influenced by two or more variables

In statistics and causal graphs, a variable is a collider when it is causally influenced by two or more variables. The name "collider" reflects the fact that in graphical models, the arrow heads from variables that lead into the collider appear to "collide" on the node that is the collider. They are sometimes also referred to as inverted forks.

Causal inference is the process of determining the independent, actual effect of a particular phenomenon that is a component of a larger system. The main difference between causal inference and inference of association is that causal inference analyzes the response of an effect variable when a cause of the effect variable is changed. The science of why things occur is called etiology, and can be described using the language of scientific causal notation. Causal inference is said to provide the evidence of causality theorized by causal reasoning.

In statistics, econometrics, epidemiology, genetics and related disciplines, causal graphs are probabilistic graphical models used to encode assumptions about the data-generating process.

Causal analysis is the field of experimental design and statistics pertaining to establishing cause and effect. Exploratory causal analysis (ECA), also known as data causality or causal discovery is the use of statistical algorithms to infer associations in observed data sets that are potentially causal under strict assumptions. ECA is a type of causal inference distinct from causal modeling and treatment effects in randomized controlled trials. It is exploratory research usually preceding more formal causal research in the same way exploratory data analysis often precedes statistical hypothesis testing in data analysis

<i>The Book of Why</i> 2018 book by Judea Pearl and Dana Mackenzie

The Book of Why: The New Science of Cause and Effect is a 2018 nonfiction book by computer scientist Judea Pearl and writer Dana Mackenzie. The book explores the subject of causality and causal inference from statistical and philosophical points of view for a general audience.

Causal AI is an artificial intelligence system that can explain cause and effect. Causal AI technology is used by organisations to help explain decision making and the causes for a decision.

References

  1. Judea Pearl (2000). Causality: Models, Reasoning and Inference. Cambridge University Press. ISBN   978-0-521-77362-1. OL   15495862M. Wikidata   Q108441215.
  2. Judea Pearl (2009). Causality (2nd ed.). New York City: Cambridge University Press. ISBN   978-0-521-89560-6. OCLC   1261134347. OL   27305967M. Wikidata   Q108441243.
  3. Pearl, Judea (June 18, 2009). "Giving Computers Free Will". Forbes. Archived from the original on January 12, 2020. Retrieved January 12, 2020.
  4. McArdle, Megan (May 11, 2012). "When Correlation Is Not Causation, But Something Much More Screwy". The Atlantic. Archived from the original on August 18, 2019. Retrieved January 12, 2020.
  5. Chin, Matthew (July 22, 2016). "Solving big data's 'fusion' problem". UCLA. Archived from the original on October 16, 2019. Retrieved January 12, 2020.
  6. Porta, Miquel (October 17, 2014). "The deconstruction of paradoxes in epidemiology". OUPblog. Archived from the original on September 26, 2019. Retrieved January 12, 2020.
  7. Hoover, K. (2003). The Economic Journal, 113(488), F411–F413. Retrieved from https://www.jstor.org/stable/3590225
  8. Morgan, Stephen L. "Invited review of Causality: Models, Reasoning, and Evidence by Judea Pearl". Sociological Methods & Research . 32 (2): 411–416. doi:10.1177/0049124104323004. S2CID   220533962.
  9. Leland Gerson Neuberg (June 6, 2003). "CAUSALITY: MODELS, REASONING, AND INFERENCE, by Judea Pearl, Cambridge University Press, 2000". Econometric Theory . 19 (4). doi:10.1017/S0266466603004109. ISSN   0266-4666. Wikidata   Q108441284.