The Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance is a center for research and education focusing on pathogens that exhibit antimicrobial resistance located at Tufts University and Tufts Medical Center. [1]
Tufts University and the Tufts Medical Center founded the Center for Integrated Management of Antimicrobial Resistance (CIMAR) in 2018. The CIMAR was established in order to provide a response to "superbug" epidemics. [2] The founding co-directors of the center were Helen Boucher and Ralph Isberg. [2] [3] The center was renamed in honor of Stuart B. Levy in 2020. [4] [5] Researchers associated with the Levy CIMAR include Maya Nadimpalli. [6]
An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of such infections. They may either kill or inhibit the growth of bacteria. A limited number of antibiotics also possess antiprotozoal activity. Antibiotics are not effective against viruses such as the ones which cause the common cold or influenza; drugs which inhibit growth of viruses are termed antiviral drugs or antivirals rather than antibiotics. They are also not effective against fungi; drugs which inhibit growth of fungi are called antifungal drugs.
Antimicrobial resistance (AMR) occurs when microbes evolve mechanisms that protect them from the effects of antimicrobials. All classes of microbes can evolve resistance where the drugs are no longer effective. Fungi evolve antifungal resistance, viruses evolve antiviral resistance, protozoa evolve antiprotozoal resistance, and bacteria evolve antibiotic resistance. Together all of these come under the umbrella of antimicrobial resistance. Microbes resistant to multiple antimicrobials are called multidrug resistant (MDR) and are sometimes referred to as superbugs. Although antimicrobial resistance is a naturally occurring process, it is often the result of improper usage of the drugs and management of the infections.
Klebsiella pneumoniae is a Gram-negative, non-motile, encapsulated, lactose-fermenting, facultative anaerobic, rod-shaped bacterium. It appears as a mucoid lactose fermenter on MacConkey agar.
The Alliance for the Prudent Use of Antibiotics (APUA) is a non-profit organization founded in 1981 by Stuart B. Levy (1938–2019), Professor of Medicine at Tufts University and headquartered in Boston, Massachusetts. APUA's mission is to strengthen society's defenses against infectious disease by promoting appropriate access and use to antimicrobial agents and controlling antimicrobial resistance on a worldwide basis. APUA has a network of affiliated chapters in over 50 countries, and conducts applied antimicrobial resistance research, education, capacity building and advocacy at the global and grassroots levels.
Antibiotic prophylaxis refers to, for humans, the prevention of infection complications using antimicrobial therapy. Antibiotic prophylaxis in domestic animal feed mixes has been employed in America since at least 1970.
Antibiotic misuse, sometimes called antibiotic abuse or antibiotic overuse, refers to the misuse or overuse of antibiotics, with potentially serious effects on health. It is a contributing factor to the development of antibiotic resistance, including the creation of multidrug-resistant bacteria, informally called "super bugs": relatively harmless bacteria can develop resistance to multiple antibiotics and cause life-threatening infections.
One Health Trust, formerly the Center for Disease Dynamics, Economics & Policy, is a public health research organization with offices in Washington, D.C., New Delhi, and Bangalore, India.
Steffanie A. Strathdee is the Associate Dean of Global Health Sciences, Harold Simon Distinguished Professor at the University of California San Diego School of Medicine and Co-Director at the Center for Innovative Phage Applications and Therapeutics. She is known for her work on HIV research and prevention programmes in Tijuana.
NDM-1 is an enzyme that makes bacteria resistant to a broad range of beta-lactam antibiotics. These include the antibiotics of the carbapenem family, which are a mainstay for the treatment of antibiotic-resistant bacterial infections. The gene for NDM-1 is one member of a large gene family that encodes beta-lactamase enzymes called carbapenemases. Bacteria that produce carbapenemases are often referred to in the news media as "superbugs" because infections caused by them are difficult to treat. Such bacteria are usually sensitive only to polymyxins and tigecycline.
Carbapenem-resistant Enterobacteriaceae (CRE) or carbapenemase-producing Enterobacteriaceae (CPE) are Gram-negative bacteria that are resistant to the carbapenem class of antibiotics, considered the drugs of last resort for such infections. They are resistant because they produce an enzyme called a carbapenemase that disables the drug molecule. The resistance can vary from moderate to severe. Enterobacteriaceae are common commensals and infectious agents. Experts fear CRE as the new "superbug". The bacteria can kill up to half of patients who get bloodstream infections. Tom Frieden, former head of the Centers for Disease Control and Prevention has referred to CRE as "nightmare bacteria". Examples of enzymes found in certain types of CRE are KPC and NDM. KPC and NDM are enzymes that break down carbapenems and make them ineffective. Both of these enzymes, as well as the enzyme VIM have also been reported in Pseudomonas.
Antibiotic use in livestock is the use of antibiotics for any purpose in the husbandry of livestock, which includes treatment when ill (therapeutic), treatment of a group of animals when at least one is diagnosed with clinical infection (metaphylaxis), and preventative treatment (prophylaxis). Antibiotics are an important tool to treat animal as well as human disease, safeguard animal health and welfare, and support food safety. However, used irresponsibly, this may lead to antibiotic resistance which may impact human, animal and environmental health.
Stuart Blank Levy was a researcher and physician at Tufts University. He was among the first to advocate for greater awareness of antibiotic resistance and founded the Alliance for the Prudent Use of Antibiotics.
The Community for Open Antimicrobial Drug Discovery (CO-ADD) is a not-for-profit initiative created in 2015 reaching out to chemists in academia and research organisations who have compounds that were not designed as antibiotics and would not otherwise be screened for antimicrobial activity. These academic compounds are screened against a key panel of drug-resistant bacterial strains -superbugs. Multi-drug resistant microbes are a serious health treat, and exploration of novel chemical diversity is essential to find new antibiotics.
Gerard D. Wright, PhD, FRSC, is a professor in the Department of Biochemistry and Biomedical Sciences, and Canada Research Chair in Antibiotic Biochemistry at McMaster University who studies chemical compounds that can combat antibiotic resistance in bacteria. He is also an Associate member of the Departments of Chemistry and Chemical Biology and Pathology and Molecular Medicine. Wright was Chair of the Department of Biochemistry and Biomedical Sciences from 2001 to 2007. He was the Director of McMaster's Michael G. DeGroote Institute for Infectious Disease Research from 2007 to 2022. He is currently the executive director of Canada's Global Nexus for Pandemics and Biological Threats. He is also founding director of the McMaster Antimicrobial Research Centre, and co-founder of the McMaster High Throughput Screening Facility.
Asad Ullah Khan is an Indian microbiologist, biochemist and a professor at the Interdisciplinary Biotechnology Unit of the Aligarh Muslim University. He is known for his studies on multidrug resistant clinical strains as well as for the first sighting in India of Aligarh super bug (NDM-4), a variant of New Delhi metallo-beta-lactamase 1 (NDM-1). He is an elected fellow of the Royal Society of Chemistry, the Biotech Research Society, India and the Indian Academy of Microbiological Sciences. The Department of Biotechnology of the Government of India awarded him the National Bioscience Award for Career Development, one of the highest Indian science awards, for his contributions to biosciences, in 2012.
Kastus Technologies is an Irish multinational nanotechnology company which specialises in patented visible light activated, photocatalytic, antimicrobial coatings. The coatings prevent the growth of bacteria on the surface it has been applied to, such as ceramics, glass, and touchscreens, with no negative side effects for the end user. Founded in Dublin in 2014, Kastus’ antimicrobial coatings were in development for over 10 years as part of a collaboration with Dublin Institute of Technology and the Advanced Materials and Bio Engineering Research (AMBER) Centres.
The Society of Infectious Diseases Pharmacists (SIDP) is a non-profit association of pharmacists and other allied health professionals who specialize in infectious diseases and antimicrobial stewardship. According to the Board of Pharmaceutical Specialties, clinical pharmacists specializing in infectious diseases are trained in the use of microbiology and pharmacology to develop, implement, and monitor drug regimens that incorporate the pharmacodynamics and pharmacokinetics of antimicrobials for patients.
Antibiotic use in the United States poultry farming industry is the controversial prophylactic use of antibiotics in the country's poultry farming industry. It differs from the common practice in Europe, where antibiotics for growth promotion were disallowed in the 1950s.
Helen Boucher is Dean of Tufts University School of Medicine and Chief Academic Officer of Tufts Medicine, the parent health system for Tufts Medical Center in Boston. Prior to this, she served as Chief of the Division of Geographic Medicine and Infectious Diseases at Tufts Medical Center, a Professor of Medicine at Tufts University School of Medicine, and Director of the Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance at Tufts.