The chain-ladder or development [1] method is a prominent [2] [3] actuarial loss reserving technique. The chain-ladder method is used in both the property and casualty [1] [4] and health insurance [5] fields. Its intent is to estimate incurred but not reported claims and project ultimate loss amounts. [5] The primary underlying assumption of the chain-ladder method is that historical loss development patterns are indicative of future loss development patterns. [1] [3] [4]
According to Jacqueline Friedland's "Estimating Unpaid Claims Using Basic Techniques," there are seven steps to apply the chain-ladder technique:
Age-to-age factors, also called loss development factors (LDFs) or link ratios, represent the ratio of loss amounts from one valuation date to another, and they are intended to capture growth patterns of losses over time. These factors are used to project where the ultimate amount losses will settle.
Firstly, losses (either reported or paid) are compiled into a triangle, where the rows represent accident years and the columns represent valuation dates. For example, the entry '43,169,009' represents loss amounts related to claims occurring in 1998, valued as of 24 months.
Valuation date Accident year | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 |
---|---|---|---|---|---|---|---|---|---|---|
1998 | 37,017,487 | 43,169,009 | 45,568,919 | 46,784,558 | 47,337,318 | 47,533,264 | 47,634,419 | 47,689,655 | 47,724,678 | 47,742,304 |
1999 | 38,954,484 | 46,045,718 | 48,882,924 | 50,219,672 | 50,729,292 | 50,926,779 | 51,069,285 | 51,163,540 | 51,185,767 | |
2000 | 41,155,776 | 49,371,478 | 52,358,476 | 53,780,322 | 54,303,086 | 54,582,950 | 54,742,188 | 54,837,929 | ||
2001 | 42,394,069 | 50,584,112 | 53,704,296 | 55,150,118 | 55,895,583 | 56,156,727 | 56,299,562 | |||
2002 | 44,755,243 | 52,971,643 | 56,102,312 | 57,703,851 | 58,363,564 | 58,592,712 | ||||
2003 | 45,163,102 | 52,497,731 | 55,468,551 | 57,015,411 | 57,565,344 | |||||
2004 | 45,417,309 | 52,640,322 | 55,553,673 | 56,976,657 | ||||||
2005 | 46,360,869 | 53,790,061 | 56,786,410 | |||||||
2006 | 46,582,684 | 54,641,339 | ||||||||
2007 | 48,853,563 |
Next, age-to-age factors are determined by calculating the ratio of losses at subsequent valuation dates. From 24 months to 36 months, accident year 1998 losses increased from 43,169,009 to 45,568,919, so the corresponding age-to-age factor is 45,568,919 / 43,169,009 = 1.056. A "tail factor" is selected (in this case, 1.000) to project from the latest valuation age to ultimate.
Accident year | 12-24 | 24-36 | 36-48 | 48-60 | 60-72 | 72-84 | 84-96 | 96-108 | 108-120 | To ult |
---|---|---|---|---|---|---|---|---|---|---|
1998 | 1.166 | 1.056 | 1.027 | 1.012 | 1.004 | 1.002 | 1.001 | 1.001 | 1.000 | |
1999 | 1.182 | 1.062 | 1.027 | 1.010 | 1.004 | 1.003 | 1.002 | 1.000 | ||
2000 | 1.200 | 1.061 | 1.027 | 1.010 | 1.005 | 1.003 | 1.002 | |||
2001 | 1.193 | 1.062 | 1.027 | 1.014 | 1.005 | 1.003 | ||||
2002 | 1.184 | 1.059 | 1.029 | 1.011 | 1.004 | |||||
2003 | 1.162 | 1.057 | 1.028 | 1.010 | ||||||
2004 | 1.159 | 1.055 | 1.026 | |||||||
2005 | 1.160 | 1.056 | ||||||||
2006 | 1.173 | |||||||||
2007 |
Finally, averages of the age-to-age factors are calculated. Judgmental selections are made after observing several averages. The age-to-age factors are then multiplied together to obtain cumulative development factors.
Month range Averaging method | 12-24 | 24-36 | 36-48 | 48-60 | 60-72 | 72-84 | 84-96 | 96-108 | 108-120 | To ult |
---|---|---|---|---|---|---|---|---|---|---|
Simple average last 5 years | 1.168 | 1.058 | 1.027 | 1.011 | 1.004 | 1.003 | 1.002 | 1.001 | 1.000 | |
Simple average last 3 years | 1.164 | 1.056 | 1.027 | 1.012 | 1.005 | 1.003 | 1.002 | 1.001 | 1.000 | |
Volume weighted last 5 years | 1.168 | 1.058 | 1.027 | 1.011 | 1.004 | 1.003 | 1.002 | 1.001 | 1.000 | |
Volume weighted last 3 years | 1.164 | 1.056 | 1.027 | 1.012 | 1.005 | 1.003 | 1.002 | 1.001 | 1.000 | |
Selected | 1.164 | 1.056 | 1.027 | 1.012 | 1.005 | 1.003 | 1.002 | 1.001 | 1.000 | 1.000 |
Cumulative to ultimate | 1.292 | 1.110 | 1.051 | 1.023 | 1.011 | 1.006 | 1.003 | 1.001 | 1.000 | 1.000 |
The cumulative development factors multiplied by the reported (or paid) losses to project ultimate losses.
Accident year | Reported claims | Development factor to ultimate | Projected ultimate claims |
---|---|---|---|
1998 | 47,742,304 | 1.000 | 47,742,304 |
1999 | 51,185,767 | 1.000 | 51,185,767 |
2000 | 54,837,929 | 1.001 | 54,892,767 |
2001 | 56,299,562 | 1.003 | 56,468,461 |
2002 | 58,592,712 | 1.006 | 58,944,268 |
2003 | 57,565,344 | 1.011 | 58,198,563 |
2004 | 56,976,657 | 1.023 | 58,287,120 |
2005 | 56,786,410 | 1.051 | 59,682,517 |
2006 | 54,641,339 | 1.110 | 60,651,886 |
2007 | 48,853,563 | 1.292 | 63,118,803 |
Total | 543,481,587 | 569,172,456 |
Incurred but not reported can be obtained by subtracting reported losses from ultimate losses, in this case, 569,172,456 - 543,481,587 = 25,690,869. [6] [7] [8]
The chain-ladder technique is only accurate when patterns of loss development in the past can be assumed to continue in the future. [1] [3] [4] In contrast to other loss reserving methods such as the Bornhuetter–Ferguson method, it relies only on past experience to arrive at an incurred but not reported claims estimate.
When there are changes to an insurer's operations, such as a change in claims settlement times, changes in claims staffing, or changes to case reserve practices, the chain-ladder method will not produce an accurate estimate without adjustments. [1]
The chain-ladder method is also very responsive to changes in experience, and as a result, it may be unsuitable for very volatile lines of business. [5]
The discounted cash flow (DCF) analysis, in financial analysis, is a method used to value a security, project, company, or asset, that incorporates the time value of money. Discounted cash flow analysis is widely used in investment finance, real estate development, corporate financial management, and patent valuation. Used in industry as early as the 1700s or 1800s, it was widely discussed in financial economics in the 1960s, and U.S. courts began employing the concept in the 1980s and 1990s.
The price–earnings ratio, also known as P/E ratio, P/E, or PER, is the ratio of a company's share (stock) price to the company's earnings per share. The ratio is used for valuing companies and to find out whether they are overvalued or undervalued.
Actuarial science is the discipline that applies mathematical and statistical methods to assess risk in insurance, pension, finance, investment and other industries and professions. More generally, actuaries apply rigorous mathematics to model matters of uncertainty and life expectancy.
In finance, valuation is the process of determining the value of a (potential) investment, asset, or security. Generally, there are three approaches taken, namely discounted cashflow valuation, relative valuation, and contingent claim valuation.
In accounting, fair value is a rational and unbiased estimate of the potential market price of a good, service, or asset. The derivation takes into account such objective factors as the costs associated with production or replacement, market conditions and matters of supply and demand. Subjective factors may also be considered such as the risk characteristics, the cost of and return on capital, and individually perceived utility.
Ecosystem valuation is an economic process which assigns a value to an ecosystem and/or its ecosystem services. By quantifying, for example, the human welfare benefits of a forest to reduce flooding and erosion while sequestering carbon, providing habitat for endangered species, and absorbing harmful chemicals, such monetization ideally provides a tool for policy-makers and conservationists to evaluate management impacts and compare a cost-benefit analysis of potential policies. However, such valuations are estimates, and involve the inherent quantitative uncertainty and philosophical debate of evaluating a range non-market costs and benefits.
Monte Carlo methods are used in corporate finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining the distribution of their value over the range of resultant outcomes. This is usually done by help of stochastic asset models. The advantage of Monte Carlo methods over other techniques increases as the dimensions of the problem increase.
Business valuation is a process and a set of procedures used to estimate the economic value of an owner's interest in a business. Here various valuation techniques are used by financial market participants to determine the price they are willing to pay or receive to effect a sale of the business. In addition to estimating the selling price of a business, the same valuation tools are often used by business appraisers to resolve disputes related to estate and gift taxation, divorce litigation, allocate business purchase price among business assets, establish a formula for estimating the value of partners' ownership interest for buy-sell agreements, and many other business and legal purposes such as in shareholders deadlock, divorce litigation and estate contest.
Capitalization rate is a real estate valuation measure used to compare different real estate investments.
There are several classification systems for the economic evaluation of mineral deposits worldwide. The most commonly used schemes base on the International Reporting Template, developed by the CRIRSCO - Committee for Mineral Reserves International Reporting Standards, like the Australian Joint Ore Reserves Committee - JORC Code 2012, the Pan-European Reserves & Resources Reporting Committee' – PERC Reporting Standard from 2021, the Canadian Institute of Mining, Metallurgy and Petroleum - CIM classification and the South African Code for the Reporting of Mineral Resources and Mineral Reserves (SAMREC). A more detailed description of the historical development concerning reporting about mineral deposits can be found on the PERC web site.
Valuation using discounted cash flows is a method of estimating the current value of a company based on projected future cash flows adjusted for the time value of money. The cash flows are made up of those within the “explicit” forecast period, together with a continuing or terminal value that represents the cash flow stream after the forecast period. In several contexts, DCF valuation is referred to as the "income approach".
In economics, valuation using multiples, or "relative valuation", is a process that consists of:
The following outline is provided as an overview of and topical guide to finance:
Loss reserving is the calculation of the required reserves for a tranche of insurance business, including outstanding claims reserves.
In insurance, incurred but not reported (IBNR) claims is the amount owed by an insurer to all valid claimants who have had a covered loss but have not yet reported it. Since the insurer knows neither how many of these losses have occurred, nor the severity of each loss, IBNR is necessarily an estimate. The sum of IBNR losses plus reported losses yields an estimate of the total eventual liabilities the insurer will cover, known as ultimate losses.
Valuation risk is the risk that an entity suffers a loss when trading an asset or a liability due to a difference between the accounting value and the price effectively obtained in the trade.
The value of work done (VOWD) is a project management technique for measuring and estimating the project cost at a point in time. It is mainly used in project environments of the Petroleum industry and is defined as the value of goods and services progressed, regardless of whether or not they have been paid for or received. The primary purpose of determining VOWD is to get an accurate and comprehensive as possible estimate of cost for a project at a point in time. This is used in overall project management including reporting and cost control.
The Bornhuetter–Ferguson method is a loss reserving technique in insurance.
Loss development factors or LDFs are used in insurance pricing and reserving to adjust claims to their projected ultimate level. Insurance claims, especially in long-tailed lines such as liability insurance, are often not paid out immediately. Claims adjusters set initial case reserves for claims; however, it is often impossible to predict immediately what the final amount of an insurance claim will be, due to uncertainty around defense costs, settlement amounts, and trial outcomes. Loss development factors are used by actuaries, underwriters, and other insurance professionals to "develop" claim amounts to their estimated final value. Ultimate loss amounts are necessary for determining an insurance company's carried reserves. They are also useful for determining adequate insurance premiums, when loss experience is used as a rating factor
Oil and gas reserves denote discovered quantities of crude oil and natural gas that can be profitably produced/recovered from an approved development. Oil and gas reserves tied to approved operational plans filed on the day of reserves reporting are also sensitive to fluctuating global market pricing. The remaining resource estimates are likely sub-commercial and may still be under appraisal with the potential to be technically recoverable once commercially established. Natural gas is frequently associated with oil directly and gas reserves are commonly quoted in barrels of oil equivalent (BoE). Consequently, both oil and gas reserves, as well as resource estimates, follow the same reporting guidelines, and are referred to collectively hereinafter as oil & gas.
{{cite web}}
: CS1 maint: archived copy as title (link)