Chain-ladder method

Last updated

The chain-ladder or development [1] method is a prominent [2] [3] actuarial loss reserving technique. The chain-ladder method is used in both the property and casualty [1] [4] and health insurance [5] fields. Its intent is to estimate incurred but not reported claims and project ultimate loss amounts. [5] The primary underlying assumption of the chain-ladder method is that historical loss development patterns are indicative of future loss development patterns. [1] [3] [4]

Contents

Methodology

According to Jacqueline Friedland's "Estimating Unpaid Claims Using Basic Techniques," there are seven steps to apply the chain-ladder technique:

  1. Compile claims data in a development triangle
  2. Calculate age-to-age factors
  3. Calculate averages of the age-to-age factors
  4. Select claim development factors
  5. Select tail factor
  6. Calculate cumulative claim development factors
  7. Project ultimate claims

Age-to-age factors, also called loss development factors (LDFs) or link ratios, represent the ratio of loss amounts from one valuation date to another, and they are intended to capture growth patterns of losses over time. These factors are used to project where the ultimate amount losses will settle.

Example

Firstly, losses (either reported or paid) are compiled into a triangle, where the rows represent accident years and the columns represent valuation dates. For example, the entry '43,169,009' represents loss amounts related to claims occurring in 1998, valued as of 24 months.

Reported claims [1]
Valuation
date

Accident year
1224364860728496108120
199837,017,48743,169,00945,568,91946,784,55847,337,31847,533,26447,634,41947,689,65547,724,67847,742,304
199938,954,48446,045,71848,882,92450,219,67250,729,29250,926,77951,069,28551,163,54051,185,767
200041,155,77649,371,47852,358,47653,780,32254,303,08654,582,95054,742,18854,837,929
200142,394,06950,584,11253,704,29655,150,11855,895,58356,156,72756,299,562
200244,755,24352,971,64356,102,31257,703,85158,363,56458,592,712
200345,163,10252,497,73155,468,55157,015,41157,565,344
200445,417,30952,640,32255,553,67356,976,657
200546,360,86953,790,06156,786,410
200646,582,68454,641,339
200748,853,563

Next, age-to-age factors are determined by calculating the ratio of losses at subsequent valuation dates. From 24 months to 36 months, accident year 1998 losses increased from 43,169,009 to 45,568,919, so the corresponding age-to-age factor is 45,568,919 / 43,169,009 = 1.056. A "tail factor" is selected (in this case, 1.000) to project from the latest valuation age to ultimate.

Age-to-age factors [1]
Accident year12-2424-3636-4848-6060-7272-8484-9696-108108-120To ult
19981.1661.0561.0271.0121.0041.0021.0011.0011.000
19991.1821.0621.0271.0101.0041.0031.0021.000
20001.2001.0611.0271.0101.0051.0031.002
20011.1931.0621.0271.0141.0051.003
20021.1841.0591.0291.0111.004
20031.1621.0571.0281.010
20041.1591.0551.026
20051.1601.056
20061.173
2007

Finally, averages of the age-to-age factors are calculated. Judgmental selections are made after observing several averages. The selected age-to-age factors are then multiplied together to obtain cumulative development factors.

Averages [1]
Month range

Averaging method
12-2424-3636-4848-6060-7272-8484-9696-108108-120To ult
Simple average last 5 years1.1681.0581.0271.0111.0041.0031.0021.0011.000
Simple average last 3 years1.1641.0561.0271.0121.0051.0031.0021.0011.000
Volume weighted last 5 years1.1681.0581.0271.0111.0041.0031.0021.0011.000
Volume weighted last 3 years1.1641.0561.0271.0121.0051.0031.0021.0011.000
Selected1.1641.0561.0271.0121.0051.0031.0021.0011.0001.000
Cumulative to ultimate1.2921.1101.0511.0231.0111.0061.0031.0011.0001.000

The cumulative development factors multiplied by the reported (or paid) losses to project ultimate losses.

Estimation of ultimate claims [1]
Accident yearReported claimsDevelopment factor to ultimateProjected ultimate claims
199847,742,3041.00047,742,304
199951,185,7671.00051,185,767
200054,837,9291.00154,892,767
200156,299,5621.00356,468,461
200258,592,7121.00658,944,268
200357,565,3441.01158,198,563
200456,976,6571.02358,287,120
200556,786,4101.05159,682,517
200654,641,3391.11060,651,886
200748,853,5631.29263,118,803
Total543,481,587569,172,456

Incurred but not reported can be obtained by subtracting reported losses from ultimate losses, in this case, 569,172,456 - 543,481,587 = 25,690,869. [6] [7] [8]

Limitations

The chain-ladder technique is only accurate when patterns of loss development in the past can be assumed to continue in the future. [1] [3] [4] In contrast to other loss reserving methods such as the Bornhuetter–Ferguson method, it relies only on past experience to arrive at an incurred but not reported claims estimate.

When there are changes to an insurer's operations, such as a change in claims settlement times, changes in claims staffing, or changes to case reserve practices, the chain-ladder method will not produce an accurate estimate without adjustments. [1]

The chain-ladder method is also very responsive to changes in experience, and as a result, it may be unsuitable for very volatile lines of business. [5]

See also

References

  1. 1 2 3 4 5 6 7 8 9 Friedland, Jacqueline (July 30, 2010). "Estimating Unpaid Claims Using Basic Techniques" (PDF). Casualty Actuarial Society.
  2. Schmidt, Klaus D. (1999). "Chain Ladder Prediction and Asset Liability Management". Blätter der DGVFM. 24: 1–9. doi:10.1007/BF02808592. S2CID   167794128.
  3. 1 2 3 "Chain Ladder Method (CLM)".
  4. 1 2 3 Werner, Geoff; Modlin, Claudine; Willis Towers Watson (May 2016). "Basic Ratemaking" (PDF). Casualty Actuarial Society.
  5. 1 2 3 "Valuation and Reserving Techniques" (PDF). Archived from the original (PDF) on 2014-03-27. Retrieved 2016-03-13.
  6. Schmidt, Klaus D. (September 11–12, 2006). Methods and Models of Loss Reserving Based on Run-Off Triangles: A Unifying Survey (PDF). 2006 CAS Casualty Loss Reserve Seminar.
  7. "Understanding Loss Development Factors". 2011-10-03.
  8. Gisler, Alois; Wüthrich, Mario V. (2008). "Credibility for the Chain Ladder Reserving Method". ASTIN Bulletin. 38 (2): 565–600. doi:10.2143/AST.38.2.2033354. hdl: 20.500.11850/422522 . ISSN   0515-0361.