Characteristic 2 type

Last updated

In finite group theory, a branch of mathematics, a group is said to be of characteristic 2 type or even type or of even characteristic if it resembles a group of Lie type over a field of characteristic 2.

In the classification of finite simple groups, there is a major division between group of characteristic 2 type, where involutions resemble unipotent elements, and other groups, where involutions resemble semisimple elements.

Groups of characteristic 2 type and rank at least 3 are classified by the trichotomy theorem.

Definitions

A group is said to be of even characteristic if

for all maximal 2-local subgroups M that contain a Sylow 2-subgroup of G,

where denotes the 2-core, the largest normal 2-subgroup of M, which is the intersection of all conjugates of any given Sylow 2-subgroup. If this condition holds for all maximal 2-local subgroups M then G is said to be of characteristic 2 type. Gorenstein, Lyons & Solomon (1994 , p.55) use a modified version of this called even type.

Related Research Articles

<span class="mw-page-title-main">Classification of finite simple groups</span> Massive theorem assigning all but 27 finite simple groups to a few infinite families

In mathematics, the classification of finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.

<span class="mw-page-title-main">Monster group</span> Finite simple group

In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order
   246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
   = 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000
   ≈ 8×1053.

<span class="mw-page-title-main">Simple group</span> Group without normal subgroups other than the trivial group and itself

In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group. This process can be repeated, and for finite groups one eventually arrives at uniquely determined simple groups, by the Jordan–Hölder theorem.

<span class="mw-page-title-main">Nilpotent group</span> Group that has an upper central series terminating with G

In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, it has a central series of finite length or its lower central series terminates with {1}.

<span class="mw-page-title-main">Sporadic group</span> Finite simple set type not classified as Lie, cyclic or alternating

In mathematics, a sporadic group is one of the 26 exceptional groups found in the classification of finite simple groups.

<span class="mw-page-title-main">Rudvalis group</span>

In the area of modern algebra known as group theory, the Rudvalis groupRu is a sporadic simple group of order

<span class="mw-page-title-main">Michael Aschbacher</span> American mathematician

Michael George Aschbacher is an American mathematician best known for his work on finite groups. He was a leading figure in the completion of the classification of finite simple groups in the 1970s and 1980s. It later turned out that the classification was incomplete, because the case of quasithin groups had not been finished. This gap was fixed by Aschbacher and Stephen D. Smith in 2004, in a pair of books comprising about 1300 pages. Aschbacher is currently the Shaler Arthur Hanisch Professor of Mathematics at the California Institute of Technology.

In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson.

In mathematics, a Ree group is a group of Lie type over a finite field constructed by Ree from an exceptional automorphism of a Dynkin diagram that reverses the direction of the multiple bonds, generalizing the Suzuki groups found by Suzuki using a different method. They were the last of the infinite families of finite simple groups to be discovered.

In mathematical finite group theory, the Thompson subgroup of a finite p-group P refers to one of several characteristic subgroups of P. John G. Thompson (1964) originally defined to be the subgroup generated by the abelian subgroups of P of maximal rank. More often the Thompson subgroup is defined to be the subgroup generated by the abelian subgroups of P of maximal order or the subgroup generated by the elementary abelian subgroups of P of maximal rank. In general these three subgroups can be different, though they are all called the Thompson subgroup and denoted by .

In mathematics, the Alperin–Brauer–Gorenstein theorem characterizes the finite simple groups with quasidihedral or wreathed Sylow 2-subgroups. These are isomorphic either to three-dimensional projective special linear groups or projective special unitary groups over a finite field of odd order, depending on a certain congruence, or to the Mathieu group . Alperin, Brauer & Gorenstein (1970) proved this in the course of 261 pages. The subdivision by 2-fusion is sketched there, given as an exercise in Gorenstein, and presented in some detail in Kwon et al. (1980).

In mathematics, a quasithin group is a finite simple group that resembles a group of Lie type of rank at most 2 over a field of characteristic 2. More precisely it is a finite simple group of characteristic 2 type and width 2. Here characteristic 2 type means that its centralizers of involutions resemble those of groups of Lie type over fields of characteristic 2, and the width is roughly the maximal rank of an abelian group of odd order normalizing a non-trivial 2-subgroup of G. When G is a group of Lie type of characteristic 2 type, the width is usually the rank.

In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to. The focal subgroup theorem relates the ideas of transfer and fusion such as described by Otto Grün in. Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.

In group theory, Bender's method is a method introduced by Bender (1970) for simplifying the local group theoretic analysis of the odd order theorem. Shortly afterwards he used it to simplify the Walter theorem on groups with abelian Sylow 2-subgroups Bender (1970b), and Gorenstein and Walter's classification of groups with dihedral Sylow 2-subgroups. Bender's method involves studying a maximal subgroup M containing the centralizer of an involution, and its generalized Fitting subgroup F*(M).

In mathematics, a signalizer functor gives the intersections of a potential subgroup of a finite group with the centralizers of nontrivial elements of an abelian group. The signalizer functor theorem gives conditions under which a signalizer functor comes from a subgroup. The idea is to try to construct a -subgroup of a finite group , which has a good chance of being normal in , by taking as generators certain -subgroups of the centralizers of nonidentity elements in one or several given noncyclic elementary abelian -subgroups of The technique has origins in the Feit–Thompson theorem, and was subsequently developed by many people including Gorenstein (1969) who defined signalizer functors, Glauberman (1976) who proved the Solvable Signalizer Functor Theorem for solvable groups, and McBride who proved it for all groups. This theorem is needed to prove the so-called "dichotomy" stating that a given nonabelian finite simple group either has local characteristic two, or is of component type. It thus plays a major role in the classification of finite simple groups.

In mathematical finite group theory, a block, sometimes called Aschbacher block, is a subgroup giving an obstruction to Thompson factorization and pushing up. Blocks were introduced by Michael Aschbacher.

In mathematical finite group theory, a group of GF(2)-type is a group with an involution centralizer whose generalized Fitting subgroup is a group of symplectic type.

In mathematical finite group theory, the Gorenstein–Harada theorem, proved by Gorenstein and Harada in a 464-page paper, classifies the simple finite groups of sectional 2-rank at most 4. It is part of the classification of finite simple groups.

Ronald "Ron" Mark Solomon is an American mathematician specializing in the theory of finite groups.

In finite group theory, a p-stable group for an odd prime p is a finite group satisfying a technical condition introduced by Gorenstein and Walter in order to extend Thompson's uniqueness results in the odd order theorem to groups with dihedral Sylow 2-subgroups.

References