Charmane Eastman is an American academic research scientist whose career has focused on studying circadian rhythms and their relationships to sleep, jet lag, and shift work. She has also studied winter depression, more properly known as seasonal affective disorder (SAD). Of special focus are the effects of bright light and melatonin on circadian rhythms. [1]
Eastman received a B.S. in mathematics with a minor in physics from SUNY Albany in 1965. Then she worked as a laboratory technician at MIT, Harvard and the University of California at Berkeley. Eventually, she attended graduate school at the University of Chicago where she earned an M.S. (1976) and Ph.D. (1980) in biological psychology. Her graduate school advisor was Allan Rechtschaffen, Her dissertation was titled “Circadian rhythms of temperature, waking, and activity in the rat: dissociations, desynchronizations, and disintegrations.” [2] She then completed a post-doctoral position in the Department of Psychiatry in 1983, also in Rechtscaffen's Sleep Lab at the University of Chicago. [1]
In 1983 Rosalind Cartwright offered Eastman a faculty position in the Psychology Department at Rush University Medical Center (RUMC), Chicago, where, in 1987, she founded and became Director of the Biological Rhythms Research Laboratory. She is currently Professor Emeritus in the Department of Psychiatry and Behavioral Sciences at RUMC. [1]
Jet lag is a physiological condition that results from alterations to the body's circadian rhythms caused by rapid long-distance trans-meridian travel. For example, someone flying from New York to London, i.e. from west to east, feels as if the time were five hours earlier than local time, and someone travelling from London to New York, i.e. from east to west, feels as if the time were five hours later than local time. The phase shift when traveling from east to west is referred to as phase-delay of the circadian circle, whereas going west to east is phase-advance of the circadian circle. Most travelers find that it is harder to time zone adjust when traveling to the east. Jet lag was previously classified as one of the circadian rhythm sleep disorders.
A circadian rhythm, or circadian cycle, is a natural oscillation that repeats roughly every 24 hours. Circadian rhythms can refer to any process that originates within an organism and responds to the environment. Circadian rhythms are regulated by a circadian clock whose primary function is to rhythmically co-ordinate biological processes so they occur at the correct time to maximise the fitness of an individual. Circadian rhythms have been widely observed in animals, plants, fungi and cyanobacteria and there is evidence that they evolved independently in each of these kingdoms of life.
Delayed sleep phase disorder (DSPD), more often known as delayed sleep phase syndrome and also as delayed sleep–wake phase disorder, is the delaying of a person's circadian rhythm compared to those of societal norms. The disorder affects the timing of biological rhythms including sleep, peak period of alertness, core body temperature, and hormonal cycles.
Non-24-hour sleep–wake disorder is one of several chronic circadian rhythm sleep disorders (CRSDs). It is defined as a "chronic steady pattern comprising [...] daily delays in sleep onset and wake times in an individual living in a society". Symptoms result when the non-entrained (free-running) endogenous circadian rhythm drifts out of alignment with the light–dark cycle in nature. Although this sleep disorder is more common in blind people, affecting up to 70% of the totally blind, it can also affect sighted people. Non-24 may also be comorbid with bipolar disorder, depression, and traumatic brain injury. The American Academy of Sleep Medicine (AASM) has provided CRSD guidelines since 2007 with the latest update released in 2015.
A phase response curve (PRC) illustrates the transient change in the cycle period of an oscillation induced by a perturbation as a function of the phase at which it is received. PRCs are used in various fields; examples of biological oscillations are the heartbeat, circadian rhythms, and the regular, repetitive firing observed in some neurons in the absence of noise.
Circadian rhythm sleep disorders (CRSD), also known as circadian rhythm sleep-wake disorders (CRSWD), are a family of sleep disorders which affect the timing of sleep. CRSDs arise from a persistent pattern of sleep/wake disturbances that can be caused either by dysfunction in one's biological clock system, or by misalignment between one's endogenous oscillator and externally imposed cues. As a result of this mismatch, those affected by circadian rhythm sleep disorders have a tendency to fall asleep at unconventional time points in the day. These occurrences often lead to recurring instances of disturbed rest, where individuals affected by the disorder are unable to go to sleep and awaken at "normal" times for work, school, and other social obligations. Delayed sleep phase disorder, advanced sleep phase disorder, non-24-hour sleep–wake disorder and irregular sleep–wake rhythm disorder represents the four main types of CRSD.
Shift work sleep disorder (SWSD) is a circadian rhythm sleep disorder characterized by insomnia, excessive sleepiness, or both affecting people whose work hours overlap with the typical sleep period. Insomnia can be the difficulty to fall asleep or to wake up before the individual has slept enough. About 20% of the working population participates in shift work. SWSD commonly goes undiagnosed, so it's estimated that 10–40% of shift workers have SWSD. The excessive sleepiness appears when the individual has to be productive, awake and alert. Both symptoms are predominant in SWSD. There are numerous shift work schedules, and they may be permanent, intermittent, or rotating; consequently, the manifestations of SWSD are quite variable. Most people with different schedules than the ordinary one might have these symptoms but the difference is that SWSD is continual, long-term, and starts to interfere with the individual's life.
Ignacio Provencio is an American neuroscientist and the discoverer of melanopsin, an opsin found in specialized photosensitive ganglion cells of the mammalian retina. Provencio served as the program committee chair of the Society for Research on Biological Rhythms from 2008 to 2010.
A chronotype is the behavioral manifestation of underlying circadian rhythm's myriad of physical processes. A person's chronotype is the propensity for the individual to sleep at a particular time during a 24-hour period. Eveningness and morningness are the two extremes with most individuals having some flexibility in the timing of their sleep period. However, across development there are changes in the propensity of the sleep period with pre-pubescent children preferring an advanced sleep period, adolescents preferring a delayed sleep period and many elderly preferring an advanced sleep period.
Light effects on circadian rhythm are the effects that light has on circadian rhythm.
Charles Andrew Czeisler is a Hungarian-American physician and sleep and circadian researcher. He is a leading researcher and author in the fields of the effects of light on human physiology, circadian rhythms and sleep medicine.
A chronobiotic is an agent that can cause phase adjustment of the circadian rhythm. That is, it is a substance capable of therapeutically entraining or re-entraining long-term desynchronized or short-term dissociated circadian rhythms in mammals, or prophylactically preventing their disruption following an environmental insult such as is caused by rapid travel across several time zones. The most widely recognized chronobiotic is the hormone melatonin, secreted at night in both diurnal and nocturnal species.
Rütger Wever was a German scientist, known for his significant contributions to the field of Chronobiology, including some of the first experiments on humans in time isolated environments.
Derk-Jan Dijk is a researcher of sleep and circadian rhythms. As of 2005 he is a Distinguished Professor at the University of Surrey and the director of its Sleep Research Centre.
A constant routine protocol is a common method used in human circadian rhythm research to study internally generated, or endogenous, circadian rhythms without the effect of external, or exogenous, influences. In the method, subjects are kept in constant conditions for at least 24 hours. These include constant light and temperature, as well as constant semi-recumbent posture. In addition, subjects' food intake is evenly distributed throughout the protocol, and subjects are typically not allowed to sleep for the duration. While in these conditions, subjects are often assessed for a number of variables of interest. Two of the most common and best understood of these variables are core body temperature and melatonin.
The bunker experiment was a scientific experiment that began in 1966 to test whether humans, like other species, have an intrinsic circadian clock. It was started by Jürgen Aschoff and Rütger Wever of the Max Planck Institute for Behavioral Physiology and later taken over by Jürgen Zulley. Participants lived in a bunker for multiple weeks while scientists measured their daily rhythms in many variables. The main conclusion of the experiment was that humans have an intrinsic clock with a period greater than 24 hours. The experiment also established many features of this clock and paved the way for future circadian studies.
Dr. Debra J. Skene is a chronobiologist with specific interest in the mammalian circadian rhythm and the consequences of disturbing the circadian system. She is also interested in finding their potential treatments for people who suffer from circadian misalignment. Skene and her team of researchers tackle these questions using animal models, clinical trials, and most recently, liquid chromatography-mass spectrometry. Most notably, Skene is credited for her evidence of a novel photopigment in humans, later discovered to be melanopsin. She was also involved in discovering links between human PER3 genotype and an extremely shifted sleep schedules categorized as extreme diurnal preference. Skene received her Bachelor of Pharmacy, Master of Science, and Ph.D. in South Africa.
Ken-Ichi Honma is a Japanese chronobiologist who researches the biological mechanisms underlying circadian rhythms. After graduating from Hokkaido University School of Medicine, he practiced clinical psychiatry before beginning his research. His recent research efforts are centered around photic and non-photic entrainment, the structure of circadian clocks, and the ontogeny of circadian clocks. He often collaborates with his wife, Sato Honma, in work involving the mammalian suprachiasmatic nucleus (SCN), its components, and associated topics.
Elizabeth Klerman is a professor of neurology at Harvard Medical School. Her research focuses on applying circadian and sleep research principles to human physiology and pathophysiology. She also uses mathematical analysis and modeling to study human circadian, sleep, and objective neurobehavioral performance and subjective (self-reported) mood and alertness rhythms.
Chronodisruption is a concept in the field of circadian biology that refers to the disturbance or alteration of the body's natural biological rhythms, particularly the sleep-wake cycle, due to various environmental factors. The human body is synchronized to a 24-hour light-dark cycle, which is essential for maintaining optimal health and well-being. However, modern lifestyles, which involve exposure to artificial light, irregular sleep schedules, and shift work, can disrupt this natural rhythm, leading to a range of adverse physiological outcomes. Chronodisruption has been linked to a variety of health issues, including neurodegenerative diseases, diabetes, mood disorders, and cancer. Such disruptors can lead to dysregulation of hormones and neurotransmitters, though research continues to fully understand the physiological implications of chronodisruption. Indeed, research in chronobiology is rapidly advancing, with an increasing focus on understanding the underlying mechanisms of chronodisruption and developing strategies to prevent or mitigate its adverse effects. This includes the development of pharmacological interventions, as well as lifestyle modifications such as optimizing one’s sleeping environment and timing of meals and physical activity.