Check constraint

Last updated

A check constraint is a type of integrity constraint in SQL which specifies a requirement that must be met by each row in a database table. The constraint must be a predicate. It can refer to a single column, or multiple columns of the table. The result of the predicate can be either TRUE, FALSE, or UNKNOWN, depending on the presence of NULLs. If the predicate evaluates to UNKNOWN, then the constraint is not violated and the row can be inserted or updated in the table. This is contrary to predicates in WHERE clauses in SELECT or UPDATE statements.

Contents

For example, in a table containing products, one could add a check constraint such that the price of a product and quantity of a product is a non-negative value:

price >= 0
quantity >= 0

If these constraints were not in place, it would be possible to have a negative price (−$30) or quantity (−3 items).

Check constraints are used to ensure the validity of data in a database and to provide data integrity. If they are used at the database level, applications that use the database will not be able to add invalid data or modify valid data so the data becomes invalid, even if the application itself accepts invalid data.

Definition

Each check constraint has to be defined in the CREATE TABLE or ALTER TABLE statement using the syntax:

CREATE TABLE table_name (     ...,     CONSTRAINT constraint_name CHECK ( predicate ),     ... )
ALTER TABLE table_name    ADD CONSTRAINT constraint_name CHECK ( predicate )

If the check constraint refers to a single column only, it is possible to specify the constraint as part of the column definition.

CREATE TABLE table_name (     ...     column_nametype CHECK ( predicate ),     ... )

NOT NULL constraint

A NOT NULL constraint is functionally equivalent to the following check constraint with an IS NOT NULL predicate:

CHECK (column IS NOT NULL)

Some relational database management systems are able to optimize performance when the NOT NULL constraint syntax is used as opposed to the CHECK constraint syntax given above. [1]

Common restrictions

Most database management systems restrict check constraints to a single row, with access to constants and deterministic functions, but not to data in other tables, or to data invisible to the current transaction because of transaction isolation.

Such constraints are not truly table check constraints but rather row check constraints. Because these constraints are generally only verified when a row is directly updated (for performance reasons,) and often implemented as implied INSERT or UPDATE triggers, integrity constraints could be violated by indirect action were it not for these limitations. Furthermore, otherwise-valid modifications to these records would then be prevented by the CHECK constraint. Some examples of dangerous constraints include:

User-defined triggers can be used to work around these restrictions. Although similar in implementation, it is semantically clear that triggers will only be fired when the table is directly modified, and that it is the designer's responsibility to handle indirect, important changes in other tables; constraints on the other hand are intended to be "true at all times" regardless of the user's actions or the designer's lack of foresight.

Related Research Articles

A relational database is a database based on the relational model of data, as proposed by E. F. Codd in 1970. A system used to maintain relational databases is a relational database management system (RDBMS). Many relational database systems are equipped with the option of using SQL for querying and updating the database.

The relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.

In computer science, ACID is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequence of database operations that satisfies the ACID properties is called a transaction. For example, a transfer of funds from one bank account to another, even involving multiple changes such as debiting one account and crediting another, is a single transaction.

In the relational model of databases, a primary key is a specific choice of a minimal set of attributes (columns) that uniquely specify a tuple (row) in a relation (table). Informally, a primary key is "which attributes identify a record," and in simple cases constitute a single attribute: a unique ID. More formally, a primary key is a choice of candidate key ; any other candidate key is an alternate key.

A foreign key is a set of attributes in a table that refers to the primary key of another table. The foreign key links these two tables. Another way to put it: In the context of relational databases, a foreign key is a set of attributes subject to a certain kind of inclusion dependency constraints, specifically a constraint that the tuples consisting of the foreign key attributes in one relation, R, must also exist in some other relation, S, and furthermore that those attributes must also be a candidate key in S. In simpler words, a foreign key is a set of attributes that references a candidate key. For example, a table called TEAM may have an attribute, MEMBER_NAME, which is a foreign key referencing a candidate key, PERSON_NAME, in the PERSON table. Since MEMBER_NAME is a foreign key, any value existing as the name of a member in TEAM must also exist as a person's name in the PERSON table; in other words, every member of a TEAM is also a PERSON.

<span class="mw-page-title-main">Referential integrity</span> Where all data references are valid

Referential integrity is a property of data stating that all its references are valid. In the context of relational databases, it requires that if a value of one attribute (column) of a relation (table) references a value of another attribute, then the referenced value must exist.

In the context of SQL, data definition or data description language (DDL) is a syntax for creating and modifying database objects such as tables, indices, and users. DDL statements are similar to a computer programming language for defining data structures, especially database schemas. Common examples of DDL statements include CREATE, ALTER, and DROP.

A surrogate key in a database is a unique identifier for either an entity in the modeled world or an object in the database. The surrogate key is not derived from application data, unlike a natural key.

<span class="mw-page-title-main">Join (SQL)</span> SQL clause

A join clause in the Structured Query Language (SQL) combines columns from one or more tables into a new table. The operation corresponds to a join operation in relational algebra. Informally, a join stitches two tables and puts on the same row records with matching fields : INNER, LEFT OUTER, RIGHT OUTER, FULL OUTER and CROSS.

The SQL SELECT statement returns a result set of records, from one or more tables.

An SQL INSERT statement adds one or more records to any single table in a relational database.

A database trigger is procedural code that is automatically executed in response to certain events on a particular table or view in a database. The trigger is mostly used for maintaining the integrity of the information on the database. For example, when a new record is added to the employees table, new records should also be created in the tables of the taxes, vacations and salaries. Triggers can also be used to log historical data, for example to keep track of employees' previous salaries.

In the database structured query language (SQL), the DELETE statement is used to remove one or more records from a table. A subset may be defined for deletion using a condition, otherwise all records are removed. Some database management systems (DBMSs), like MySQL, allow deletion of rows from multiple tables with one DELETE statement.

<span class="mw-page-title-main">Null (SQL)</span> Marker used in SQL databases to indicate a value does not exist

In SQL, null or NULL is a special marker used to indicate that a data value does not exist in the database. Introduced by the creator of the relational database model, E. F. Codd, SQL null serves to fulfil the requirement that all true relational database management systems (RDBMS) support a representation of "missing information and inapplicable information". Codd also introduced the use of the lowercase Greek omega (ω) symbol to represent null in database theory. In SQL, NULL is a reserved word used to identify this marker.

A WHERE clause in SQL specifies that a SQL Data Manipulation Language (DML) statement should only affect rows that meet specified criteria. The criteria are expressed in the form of predicates. WHERE clauses are not mandatory clauses of SQL DML statements, but can be used to limit the number of rows affected by a SQL DML statement or returned by a query. In brief SQL WHERE clause is used to extract only those results from a SQL statement, such as: SELECT, INSERT, UPDATE, or DELETE statement.

<span class="mw-page-title-main">Virtuoso Universal Server</span> Computer software

Virtuoso Universal Server is a middleware and database engine hybrid that combines the functionality of a traditional relational database management system (RDBMS), object–relational database (ORDBMS), virtual database, RDF, XML, free-text, web application server and file server functionality in a single system. Rather than have dedicated servers for each of the aforementioned functionality realms, Virtuoso is a "universal server"; it enables a single multithreaded server process that implements multiple protocols. The free and open source edition of Virtuoso Universal Server is also known as OpenLink Virtuoso. The software has been developed by OpenLink Software with Kingsley Uyi Idehen and Orri Erling as the chief software architects.

In relational database management systems, a unique key is a candidate key. All the candidate keys of a relation can uniquely identify the records of the relation, but only one of them is used as the primary key of the relation. The remaining candidate keys are called unique keys because they can uniquely identify a record in a relation. Unique keys can consist of multiple columns. Unique keys are also called alternate keys. Unique keys are an alternative to the primary key of the relation. In SQL, the unique keys have a UNIQUE constraint assigned to them in order to prevent duplicates. Alternate keys may be used like the primary key when doing a single-table select or when filtering in a where clause, but are not typically used to join multiple tables.

In relational databases, the log trigger or history trigger is a mechanism for automatic recording of information about changes inserting or/and updating or/and deleting rows in a database table.

SQL:2011 or ISO/IEC 9075:2011 is the seventh revision of the ISO (1987) and ANSI (1986) standard for the SQL database query language. It was formally adopted in December 2011. The standard consists of 9 parts which are described in detail in SQL. The next version is SQL:2016.

The syntax of the SQL programming language is defined and maintained by ISO/IEC SC 32 as part of ISO/IEC 9075. This standard is not freely available. Despite the existence of the standard, SQL code is not completely portable among different database systems without adjustments.

References

  1. PostgreSQL 13 Documentation, Chapter 5. Data Definition, Section 5.4.2. Not-Null Constraints, Website: https://www.postgresql.org/docs/13/ddl-constraints.html, Accessed on Jan 9, 2021