Cherenkov luminescence imaging

Last updated

Cherenkov luminescence imaging (CLI) is an emerging imaging modality, [1] similar to bioluminescence imaging, that captures visible photons emitted by Cherenkov radiation. It basically is the optical imaging of radiotracers that emit charged particles traveling faster than the phase velocity of light in that particular medium. It can be used to quickly evaluate radio tracers in preclinical research [2] [3] [4] but also to obtain clinical images in patients. [5] While radioactivity itself can not be modified, the emitted light provides an opportunity to generate radioactivity-based activatable or "smart" imaging agents that sense for example enzymatic activity. [6]

Related Research Articles

<span class="mw-page-title-main">Positron emission tomography</span> Medical imaging technique

Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption. Different tracers are used for various imaging purposes, depending on the target process within the body.

Radionuclide therapy uses radioactive substances called radiopharmaceuticals to treat medical conditions, particularly cancer. These are introduced into the body by various means and localise to specific locations, organs or tissues depending on their properties and administration routes. This includes anything from a simple compound such as sodium iodide that locates to the thyroid via trapping the iodide ion, to complex biopharmaceuticals such as recombinant antibodies which are attached to radionuclides and seek out specific antigens on cell surfaces.

<span class="mw-page-title-main">Bone scintigraphy</span> Nuclear medicine imaging technique

A bone scan or bone scintigraphy is a nuclear medicine imaging technique of the bone. It can help diagnose a number of bone conditions, including cancer of the bone or metastasis, location of bone inflammation and fractures, and bone infection (osteomyelitis).

<span class="mw-page-title-main">Ventilation/perfusion scan</span> Medical imaging to evaluate circulation of air and blood in the lungs

A ventilation/perfusion lung scan, also called a V/Q lung scan, or ventilation/perfusion scintigraphy, is a type of medical imaging using scintigraphy and medical isotopes to evaluate the circulation of air and blood within a patient's lungs, in order to determine the ventilation/perfusion ratio. The ventilation part of the test looks at the ability of air to reach all parts of the lungs, while the perfusion part evaluates how well blood circulates within the lungs. As Q in physiology is the letter used to describe bloodflow the term V/Q scan emerged.

<span class="mw-page-title-main">18F-EF5</span> Chemical compound

EF5 is a nitroimidazole derivative used in oncology research. Due to its similarity in chemical structure to etanidazole, EF5 binds in cells displaying hypoxia.

Ioflupane (<sup>123</sup>I) Chemical compound

Ioflupane (123I) is the international nonproprietary name (INN) of a cocaine analogue which is a neuro-imaging radiopharmaceutical drug, used in nuclear medicine for the diagnosis of Parkinson's disease and the differential diagnosis of Parkinson's disease over other disorders presenting similar symptoms. During the DaT scan procedure it is injected into a patient and viewed with a gamma camera in order to acquire SPECT images of the brain with particular respect to the striatum, a subcortical region of the basal ganglia. The drug is sold under the brand name Datscan and is manufactured by GE Healthcare, formerly Amersham plc.

Scandium-44 (44Sc) is a radioactive isotope of scandium that decays by positron emission to stable 44Ca with a half-life of 4.042 hours.

<span class="mw-page-title-main">Cherenkov radiation</span> Electromagnetic radiation from a charged particle in a medium

Cherenkov radiation is electromagnetic radiation emitted when a charged particle passes through a dielectric medium at a speed greater than the phase velocity of light in that medium. A classic example of Cherenkov radiation is the characteristic blue glow of an underwater nuclear reactor. Its cause is similar to the cause of a sonic boom, the sharp sound heard when faster-than-sound movement occurs. The phenomenon is named after Soviet physicist Pavel Cherenkov.

Preclinical imaging is the visualization of living animals for research purposes, such as drug development. Imaging modalities have long been crucial to the researcher in observing changes, either at the organ, tissue, cell, or molecular level, in animals responding to physiological or environmental changes. Imaging modalities that are non-invasive and in vivo have become especially important to study animal models longitudinally. Broadly speaking, these imaging systems can be categorized into primarily morphological/anatomical and primarily molecular imaging techniques. Techniques such as high-frequency micro-ultrasound, magnetic resonance imaging (MRI) and computed tomography (CT) are usually used for anatomical imaging, while optical imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) are usually used for molecular visualizations.

<span class="mw-page-title-main">DOTA-TATE</span> Eight amino-acid long peptide covalently bonded to a DOTA chelator

DOTA-TATE is an eight amino acid long peptide, with a covalently bonded DOTA bifunctional chelator.

<span class="mw-page-title-main">PET-MRI</span>

Positron emission tomography–magnetic resonance imaging (PET–MRI) is a hybrid imaging technology that incorporates magnetic resonance imaging (MRI) soft tissue morphological imaging and positron emission tomography (PET) functional imaging.

<span class="mw-page-title-main">Positron emission mammography</span> Imaging procedure used to detect breast cancer

Positron emission mammography (PEM) is a nuclear medicine imaging modality used to detect or characterise breast cancer. Mammography typically refers to x-ray imaging of the breast, while PEM uses an injected positron emitting isotope and a dedicated scanner to locate breast tumors. Scintimammography is another nuclear medicine breast imaging technique, however it is performed using a gamma camera. Breasts can be imaged on standard whole-body PET scanners, however dedicated PEM scanners offer advantages including improved resolution.

Mefway (<sup>18</sup>F) Chemical compound

Mefway is a serotonin 5-HT1A receptor antagonist used in medical research, usually in the form of mefway (18F) as a positron emission tomography (PET) radiotracer.

<span class="mw-page-title-main">DPA-713</span> Chemical compound

DPA-713 or N,N-diethyl-2-(4-methoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide is a selective ligand for the translocator protein (TSPO).

<span class="mw-page-title-main">Nifene</span> Chemical compound

Nifene is a high affinity, selective nicotinic α4β2* receptor partial agonist used in medical research for nicotinic acetylcholine receptors, usually in the form of nifene (18F) as a positron emission tomography (PET) radiotracer.

<span class="mw-page-title-main">LY-2459989</span> Chemical compound

LY-2459989 is a silent antagonist of the κ-opioid receptor (KOR) that has been developed by Eli Lilly as a radiotracer of that receptor, labeled either with carbon-11 or fluorine-18. It possesses high affinity for the KOR and is highly selective for it over the μ-opioid receptor and the δ-opioid receptor. LY-2459989 is a fluorine-containing analogue and follow-up compound of LY-2795050, the first KOR-selective antagonist radiotracer. Relative to LY-2795050, LY-2459989 displays 4-fold higher affinity for the KOR and similar selectivity and also possesses greatly improved central nervous system permeation. The drug appears to possess a short duration of action, with only 25% remaining in serum at 30 minutes post-injection in rhesus monkeys, making it an ideal agent for application in biomedical imaging, for instance in positron emission tomography (PET).

<span class="mw-page-title-main">11C-UCB-J</span> Chemical compound

11C-UCB-J is a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the human brain.

Jason S. Lewis is a British radiochemist whose work relates to oncologic therapy and diagnosis. His research focus is a molecular imaging-based program focused on radiopharmaceutical development as well as the study of multimodality small- and biomolecule-based agents and their clinical translation. He has worked on the development of small molecules as well as radiolabeled peptides and antibodies probing the overexpression of receptors and antigens on tumors.

<span class="mw-page-title-main">Somatostatin receptor antagonist</span> Class of chemical compounds

Somatostatin receptor antagonists are a class of chemical compounds that work by imitating the structure of the neuropeptide somatostatin. The somatostatin receptors are G protein-coupled receptors. Somatostatin receptor subtypes in humans are sstr1, 2A, 2 B, 3, 4 and 5. While normally expressed in the gastrointestinal (GI) tract, pancreas, hypothalamus, and central nervous system (CNS), they are expressed in different types of tumours. The predominant subtype in cancer cells is the ssrt2 subtype, which is expressed in neuroblastomas, meningiomas, medulloblastomas, breast carcinomas, lymphomas, renal cell carcinomas, paragangliomas, small cell lung carcinomas and hepatocellular carcinomas.

<span class="mw-page-title-main">Somatostatin inhibitor</span> Class of pharmaceuticals

Somatostatin receptor antagonists are a class of chemical compounds that work by imitating the structure of the neuropeptide somatostatin, which is an endogenous hormone found in the human body. The somatostatin receptors are G protein-coupled receptors. Somatostatin receptor subtypes in humans include sstr1, 2A, 2 B, 3, 4, and 5. While normally expressed in the gastrointestinal (GI) tract, pancreas, hypothalamus, and central nervous system (CNS), they are expressed in different types of tumours. The predominant subtype in cancer cells is the ssrt2 subtype, which is expressed in neuroblastomas, meningiomas, medulloblastomas, breast carcinomas, lymphomas, renal cell carcinomas, paragangliomas, small cell lung carcinomas, and hepatocellular carcinomas.

References

  1. Ciarrocchi, Esther; Belcari, Nicola (2017). "Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences". EJNMMI Physics. 4 (1): 14. doi: 10.1186/s40658-017-0181-8 . ISSN   2197-7364. PMC   5346099 . PMID   28283990.
  2. Ruggiero, A; Holland, J. P.; Lewis, J. S.; Grimm, J (2010). "Cerenkov luminescence imaging of medical isotopes". Journal of Nuclear Medicine. 51 (7): 1123–1130. doi:10.2967/jnumed.110.076521. PMC   3068779 . PMID   20554722.
  3. Zhong, J.; Qin, C.; Yang, X.; Zhu, S.; Zhang, X.; Tian, J (2011). "Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging". International Journal of Biomedical Imaging. 2011 (641618): 1–6. doi: 10.1155/2011/641618 . PMC   3124671 . PMID   21747821.
  4. Desvaux, E.; Courteau, A.; Bellaye, PS.; Guillemin, M.; Drouet, C.; Walker, P.; Collin, B.; Decreau, R. A. (2018). "Cherenkov luminescence imaging is a fast and relevant preclinical tool to assess tumour hypoxia in vivo". EJNMMI Research. 8 (1): 1–6. doi: 10.1186/s13550-018-0464-7 . PMC   6301908 . PMID   30574662.
  5. Thorek, D. L.; Riedl, C. C.; Grimm, J (2013). "Clinical Cerenkov Luminescence Imaging of 18F-FDG". Journal of Nuclear Medicine. 55 (1): 95–98. doi:10.2967/jnumed.113.127266. PMC   3903390 . PMID   24078721.
  6. Thorek, Daniel L J; Ogirala, Anuja; Beattie, Bradley J; Grimm, Jan (2013). "Quantitative imaging of disease signatures through radioactive decay signal conversion". Nature Medicine. 19 (10): 1345–50. doi:10.1038/nm.3323. PMC   3795968 . PMID   24013701.